Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2114100119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858401

RESUMO

Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.


Assuntos
Evolução Biológica , Fósseis , Urodelos , Animais , Filogenia , Crânio/anatomia & histologia , Urodelos/anatomia & histologia , Urodelos/classificação
2.
Proc Biol Sci ; 289(1969): 20212493, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193399

RESUMO

Performance traits are tightly linked to the fitness of organisms. However, because studies of variation in performance traits generally focus on just one or several closely related species, we are unable to draw broader conclusions about how and why these traits vary across clades. One important performance trait related to many aspects of an animal's life history is bite-force. Here, we use a clade-wide phylogenetic comparative approach to investigate relationships between size, head dimensions and bite-force among lizards and tuatara (lepidosaurs), using the largest bite-force dataset collated to date for any taxonomic group. We test four predictions: that bite-force will be greater in larger species, and for a given body size, bite-force will be greatest in species with acrodont tooth attachment, herbivorous diets, and non-burrowing habits. We show that bite-force is strongly related to body and head size across lepidosaurs and, as predicted, larger species have the greatest bite-forces. Contrary to our other predictions, tooth attachment, diet and habit have little predictive power when accounting for size. Herbivores bite more forcefully simply because they are larger. Our results also highlight priorities for future sampling to further enhance our understanding of broader evolutionary patterns.


Assuntos
Força de Mordida , Lagartos , Animais , Evolução Biológica , Ecologia , Filogenia
3.
J Exp Biol ; 224(Pt 5)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33504585

RESUMO

Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Crânio/anatomia & histologia , Especificidade da Espécie
4.
Biol Lett ; 16(7): 20200199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32603646

RESUMO

Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no 'one-size-fits-all' approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.


Assuntos
Evolução Biológica , Ecologia
5.
BMC Evol Biol ; 19(1): 7, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621580

RESUMO

BACKGROUND: Morphological diversity among closely related animals can be the result of differing growth patterns. The Australian radiation of agamid lizards (Amphibolurinae) exhibits great ecological and morphological diversity, which they have achieved on a continent-wide scale, in a relatively short period of time (30 million years). Amphibolurines therefore make an ideal study group for examining ontogenetic allometry. We used two-dimensional landmark-based geometric morphometric methods to characterise the postnatal growth patterns in cranial shape of 18 species of amphibolurine lizards and investigate the associations between cranial morphology, and life habit and phylogeny. RESULTS: For most amphibolurine species, juveniles share a similar cranial phenotype, but by adulthood crania are more disparate in shape and occupy different sub-spaces of the total shape space. To achieve this disparity, crania do not follow a common post-natal growth pattern; there are differences among species in both the direction and magnitude of change in morphospace. We found that these growth patterns among the amphibolurines are significantly associated with ecological life habits. The clade Ctenophorus includes species that undergo small magnitudes of shape change during growth. They have dorsoventrally deep, blunt-snouted skulls (associated with terrestrial lifestyles), and also dorsoventrally shallow skulls (associated with saxicolous lifestyles). The sister clade to Ctenophorus, which includes the bearded dragon (Pogona), frill-neck lizard (Chlamydosaurus), and long-nosed dragon (Gowidon), exhibit broad and robust post-orbital regions and differing snout lengths (mainly associated with scansorial lifestyles). CONCLUSIONS: Australian agamids show great variability in the timing of development and divergence of growth trajectories which results in a diversity of adult cranial shapes. Phylogenetic signal in cranial morphology appears to be largely overwritten by signals that reflect life habit. This knowledge about growth patterns and skull shape diversity in agamid lizards will be valuable for placing phylogenetic, functional and ecological studies in a morphological context.


Assuntos
Biodiversidade , Lagartos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Austrália , Lagartos/genética , Fenótipo , Filogenia , Análise de Componente Principal , Especificidade da Espécie
7.
J Anat ; 228(5): 864-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26740056

RESUMO

The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.


Assuntos
Evolução Biológica , Lagartos/anatomia & histologia , Patela/anatomia & histologia , Animais , Fósseis , Filogenia
8.
J Exp Biol ; 217(Pt 24): 4303-12, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25359934

RESUMO

Bite-force performance is an ecologically important measure of whole-organism performance that shapes dietary breadth and feeding strategies and, in some taxa, determines reproductive success. It also is a metric that is crucial to testing and evaluating biomechanical models. We reviewed nearly 100 published studies of a range of taxa that incorporate direct in vivo measurements of bite force. Problematically, methods of data collection and processing vary considerably among studies. In particular, there is little consensus on the appropriate substrate to use on the biting surface of force transducers. In addition, the bite out-lever, defined as the distance from the fulcrum (i.e. jaw joint) to the position along the jawline at which the jaws engage the transducer, is rarely taken into account. We examined the effect of bite substrate and bite out-lever on bite-force estimates in a diverse sample of lizards. Results indicate that both variables have a significant impact on the accuracy of measurements. Maximum bite force is significantly greater using leather as the biting substrate compared with a metal substrate. Less-forceful bites on metal are likely due to inhibitory feedback from mechanoreceptors that prevent damage to the feeding apparatus. Standardization of bite out-lever affected which trial produced maximum performance for a given individual. Indeed, maximum bite force is usually underestimated without standardization because it is expected to be greatest at the minimum out-lever (i.e. back of the jaws), which in studies is rarely targeted with success. We assert that future studies should use a pliable substrate, such as leather, and use appropriate standardization for bite out-lever.


Assuntos
Força de Mordida , Arcada Osseodentária/anatomia & histologia , Lagartos/fisiologia , Músculos da Mastigação/fisiologia , Animais , Fenômenos Biomecânicos , Retroalimentação , Mecanorreceptores , Gravação em Vídeo
9.
Science ; 383(6685): 918-923, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386744

RESUMO

Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.


Assuntos
Evolução Biológica , Serpentes , Animais , Biodiversidade , Genômica , Lagartos/classificação , Locomoção , Filogenia , Serpentes/classificação , Serpentes/genética
10.
BMC Evol Biol ; 13: 208, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24063680

RESUMO

BACKGROUND: Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS: Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION: A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.


Assuntos
Evolução Biológica , Fósseis , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Serpentes/anatomia & histologia , Serpentes/classificação , Animais , Extinção Biológica , Alemanha , Lagartos/genética , Répteis/genética , Serpentes/genética
11.
Curr Biol ; 33(3): 557-565.e7, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603586

RESUMO

The extent to which evolution is deterministic is a key question in biology,1,2,3,4,5,6,7,8,9 with intensive debate on how adaptation6,10,11,12,13 and constraints14,15,16 might canalize solutions to ecological challenges.4,5,6 Alternatively, unique adaptations1,9,17 and phylogenetic contingency1,3,18 may render evolution fundamentally unpredictable.3 Information from the fossil record is critical to this debate,1,2,11 but performance data for extinct taxa are limited.7 This knowledge gap is significant, as general morphology may be a poor predictor of biomechanical performance.17,19,20 High-fiber herbivory originated multiple times within ornithischian dinosaurs,21 making them an ideal clade for investigating evolutionary responses to similar ecological pressures.22 However, previous biomechanical modeling studies on ornithischian crania17,23,24,25 have not compared early-diverging taxa spanning independent acquisitions of herbivory. Here, we perform finite-element analysis on the skull of five early-diverging members of the major ornithischian clades to characterize morphofunctional pathways to herbivory. Results reveal limited functional convergence among ornithischian clades, with each instead achieving comparable performance, in terms of reconstructed patterns and magnitudes of functionally induced stress, through different adaptations of the feeding apparatus. Thyreophorans compensated for plesiomorphic low performance through increased absolute size, heterodontosaurids expanded jaw adductor muscle volume, ornithopods increased jaw system efficiency, and ceratopsians combined these approaches. These distinct solutions to the challenges of herbivory within Ornithischia underpinned the success of this diverse clade. Furthermore, the resolution of multiple solutions to equivalent problems within a single clade through macroevolutionary time demonstrates that phenotypic evolution is not necessarily predictable, instead arising from the interplay of adaptation, innovation, contingency, and constraints.1,2,3,7,8,9,18.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Herbivoria , Crânio/anatomia & histologia , Fósseis , Dinossauros/anatomia & histologia
12.
Evolution ; 77(9): 1930-1944, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288542

RESUMO

Evolutionary shifts in chromosome compositions (karyotypes) are major drivers of lineage and genomic diversification. Fusion of ancestral chromosomes is one hypothesized mechanism for the evolutionary reduction of the total chromosome number, a frequently implied karyotypic shift. Empirical tests of this hypothesis require model systems with variable karyotypes, known chromosome features, and a robust phylogeny. Here we used chameleons, diverse lizards with exceptionally variable karyotypes ($2n=20\text{-}62$), to test whether chromosomal fusions explain the repeated evolution of karyotypes with fewer chromosomes than ancestral karyotypes. Using a multidisciplinary approach including cytogenetic analyses and phylogenetic comparative methods, we found that a model of constant loss through time best explained chromosome evolution across the chameleon phylogeny. Next, we tested whether fusions of microchromosomes into macrochromosomes explained these evolutionary losses using generalized linear models. Multiple comparisons supported microchromosome fusions as the predominant agent of evolutionary loss. We further compared our results to various natural history traits and found no correlations. As such, we infer that the tendency of microchromosomes to fuse was a quality of the ancestral chameleon genome and that the genomic predisposition of ancestors is a more substantive predictor of chromosome change than the ecological, physiological, and biogeographical factors involved in their diversification.


Assuntos
Evolução Molecular , Genoma , Cariótipo , Cariotipagem , Filogenia
13.
Proc Natl Acad Sci U S A ; 105(8): 2951-6, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287076

RESUMO

Madagascar has a diverse but mainly endemic frog fauna, the biogeographic history of which has generated intense debate, fueled by recent molecular phylogenetic analyses and the near absence of a fossil record. Here, we describe a recently discovered Late Cretaceous anuran that differs strikingly in size and morphology from extant Malagasy taxa and is unrelated either to them or to the predicted occupants of the Madagascar-Seychelles-India landmass when it separated from Africa 160 million years ago (Mya). Instead, the previously undescribed anuran is attributed to the Ceratophryinae, a clade previously considered endemic to South America. The discovery offers a rare glimpse of the anuran assemblage that occupied Madagascar before the Tertiary radiation of mantellids and microhylids that now dominate the anuran fauna. In addition, the presence of a ceratophryine provides support for a controversial paleobiogeographical model that posits physical and biotic links among Madagascar, the Indian subcontinent, and South America that persisted well into the Late Cretaceous. It also suggests that the initial radiation of hyloid anurans began earlier than proposed by some recent estimates.


Assuntos
Anuros/anatomia & histologia , Demografia , Fósseis , Filogenia , Animais , Osso e Ossos/anatomia & histologia , Geografia , Madagáscar , Paleontologia , Especificidade da Espécie
14.
R Soc Open Sci ; 7(3): 192179, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32269817

RESUMO

Correctly identifying taxa at the root of major clades or the oldest clade-representatives is critical for meaningful interpretations of evolution. A small, partially crushed skull from the Late Triassic (Norian) of Connecticut, USA, originally described as an indeterminate rhynchocephalian saurian, was recently named Colobops noviportensis and reinterpreted as sister to all remaining Rhynchosauria, one of the earliest and globally distributed groups of herbivorous reptiles. It was also interpreted as having an exceptionally reinforced snout and powerful bite based on an especially large supratemporal fenestra. Here, after a re-analysis of the original scan data, we show that the skull was strongly dorsoventrally compressed post-mortem, with most bones out of life position. The cranial anatomy is consistent with that of other rhynchocephalian lepidosauromorphs, not rhynchosaurs. The 'reinforced snout' region and the 'exceptionally enlarged temporal region' are preservational artefacts and not exceptional among clevosaurid rhynchocephalians. Colobops is thus not a key taxon for understanding diapsid feeding apparatus evolution.

15.
J Exp Zool A Ecol Integr Physiol ; 333(4): 252-263, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061035

RESUMO

Sex-related differences in morphology and behavior are well documented, but the relative contributions of genes and environment to these traits are less well understood. Species that undergo sex reversal, such as the central bearded dragon (Pogona vitticeps), offer an opportunity to better understand sexually dimorphic traits because sexual phenotypes can exist on different chromosomal backgrounds. Reproductively female dragons with a discordant sex chromosome complement (sex reversed), at least as juveniles, exhibit traits in common with males (e.g., longer tails and greater boldness). However, the impact of sex reversal on sexually dimorphic traits in adult dragons is unknown. Here, we investigate the effect of sex reversal on bite-force performance, which may be important in resource acquisition (e.g., mates and/or food). We measured body size, head size, and bite force of the three sexual phenotypes in a colony of captive animals. Among adults, we found that males (ZZm) bite more forcefully than either chromosomally concordant females (ZWf) or sex-reversed females (ZZf), and this difference is associated with having relatively larger head dimensions. Therefore, adult sex-reversed females, despite apparently exhibiting male traits as juveniles, do not develop the larger head and enhanced bite force of adult male bearded dragons. This pattern is further illustrated in the full sample by a lack of positive allometry of bite force in sex-reversed females that is observed in males. The results reveal a close association between reproductive phenotype and bite force performance, regardless of sex chromosome complement.


Assuntos
Força de Mordida , Lagartos/genética , Lagartos/fisiologia , Cromossomos Sexuais , Animais , Feminino , Humanos , Masculino , Caracteres Sexuais
16.
Proc Biol Sci ; 276(1658): 879-86, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19019789

RESUMO

The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.


Assuntos
Evolução Biológica , Fósseis , Tartarugas/anatomia & histologia , Tartarugas/genética , Animais , Escócia
17.
Proc Biol Sci ; 276(1654): 39-46, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18765341

RESUMO

Sutures form an integral part of the functioning skull, but their role has long been debated among vertebrate morphologists and palaeontologists. Furthermore, the relationship between typical skull sutures, and those involved in cranial kinesis, is poorly understood. In a series of computational modelling studies, complex loading conditions obtained through multibody dynamics analysis were imposed on a finite element model of the skull of Uromastyx hardwickii, an akinetic herbivorous lizard. A finite element analysis (FEA) of a skull with no sutures revealed higher patterns of strain in regions where cranial sutures are located in the skull. From these findings, FEAs were performed on skulls with sutures (individual and groups of sutures) to investigate their role and function more thoroughly. Our results showed that individual sutures relieved strain locally, but only at the expense of elevated strain in other regions of the skull. These findings provide an insight into the behaviour of sutures and show how they are adapted to work together to distribute strain around the skull. Premature fusion of one suture could therefore lead to increased abnormal loading on other regions of the skull causing irregular bone growth and deformities. This detailed investigation also revealed that the frontal-parietal suture of the Uromastyx skull played a substantial role in relieving strain compared with the other sutures. This raises questions about the original role of mesokinesis in squamate evolution.


Assuntos
Simulação por Computador , Suturas Cranianas/fisiologia , Lagartos/anatomia & histologia , Modelos Anatômicos , Animais , Fenômenos Biomecânicos , Suturas Cranianas/anatomia & histologia , Lagartos/crescimento & desenvolvimento
18.
Proc Biol Sci ; 276(1660): 1385-90, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19203920

RESUMO

Jaws and dentition closely resembling those of the extant tuatara (Sphenodon) are described from the Manuherikia Group (Early Miocene; 19-16 million years ago, Mya) of Central Otago, New Zealand. This material is significant in bridging a gap of nearly 70 million years in the rhynchocephalian fossil record between the Late Pleistocene of New Zealand and the Late Cretaceous of Argentina. It provides the first pre-Pleistocene record of Rhynchocephalia in New Zealand, a finding consistent with the view that the ancestors of Sphenodon have been on the landmass since it separated from the rest of Gondwana 82-60 Mya. However, if New Zealand was completely submerged near the Oligo-Miocene boundary (25-22 Mya), as recently suggested, an ancestral sphenodontine would need to have colonized the re-emergent landmass via ocean rafting from a currently unrecorded and now extinct Miocene population. Although an Early Miocene record does not preclude that possibility, it substantially reduces the temporal window of opportunity. Irrespective of pre-Miocene biogeographic history, this material also provides the first direct evidence that the ancestors of the tuatara, an animal often perceived as unsophisticated, survived in New Zealand despite substantial local climatic and environmental changes.


Assuntos
Fósseis , Répteis/anatomia & histologia , Répteis/genética , Animais , Evolução Biológica , Demografia , Dentição , Arcada Osseodentária/anatomia & histologia , Nova Zelândia
19.
Anat Rec (Hoboken) ; 302(9): 1536-1543, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30773845

RESUMO

Australia provides abundant examples of continental-scale evolutionary radiations. The collision of two continental shelves around 30 Ma facilitated an influx of squamates and the subsequent squamate radiations resulted in high taxonomic diversity. The morphological disparity seen in these major squamate groups, however, remains underexplored. Here, we examine the major cranial proportions of over 1,000 specimens using 2D linear measurements to explicitly quantify the morphological disparity of Australian agamid lizards (Amphibolurinae) and compare it to that of agamid, acrodont, and iguanian clades from other parts of the world. Our results indicate the Australian Amphibolurinae have exceptionally high cranial disparity, and we suggest that this is linked to the relaxed selective environment that greeted the founders of Amphibolurinae when they first arrived in Australia. Anat Rec, 302:1536-1543, 2019. © 2019 American Association for Anatomy.


Assuntos
Migração Animal , Biodiversidade , Evolução Biológica , Lagartos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Austrália , Geografia , Lagartos/classificação , Lagartos/fisiologia , Filogenia , Crânio/fisiologia
20.
Evolution ; 73(11): 2216-2229, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31580481

RESUMO

A defining character of adaptive radiations is the evolution of a diversity of morphological forms that are associated with the use of different habitats, following the invasion of vacant niches. Island adaptive radiations have been thoroughly investigated but continental scale radiations are more poorly understood. Here, we use 52 species of Australian agamid lizards and their Asian relatives as a model group, and employ three-dimensional geometric morphometrics to characterize cranial morphology and investigate whether variation in cranial shape reflects patterns expected from the ecological process of adaptive radiation. Phylogenetic affinity, evolutionary allometry, and ecological life habit all play major roles in the evolution of cranial shape in the sampled lizards. We find a significant association between cranial shapes and life habit. Our results are in line with the expectations of an adaptive radiation, and this is the first time detailed geometric morphometric analyses have been used to understand the selective forces that drove an adaptive radiation at a continental scale.


Assuntos
Especiação Genética , Lagartos/genética , Crânio/anatomia & histologia , Animais , Austrália , Evolução Molecular , Lagartos/classificação , Filogenia , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa