Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(20): 4554-4578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34904477

RESUMO

Proteins from plants have been considered as safer, healthier, and more sustainable resources than their animal counterparts. However, incomplete amino acid composition and relatively poor functionality limit their applications in foods. Structuring plant proteins to fibrous architectures enhances their physicochemical properties, which can favor various food applications. This review primarily focuses on fabrication of fibers from plant proteins via self-assembly, electrospinning, solution blow spinning, wet spinning, and high-temperature shear, as well as on several applications where such fibrous proteins assemble in quality foods. The changes of protein structure and protein-protein interactions during fiber production are discussed in detail, along with the effects of fabrication conditions and protein sources on the morphology and function of the fibers. Self-assembly requires proteolysis and subsequent peptide aggregation under specific conditions, which can be influenced by pH, salt and protein type. The spinning strategy is more scalable and produces uniformed fibers with larger length scales suitable for encapsulation, food packaging and sensor substrates. Significant progress has been made on high-temperature shear (including extrusion)-induced fibers responsible for desirable texture in meat analogues. Structuring plant proteins adds values for broadened food applications, but it remains challenging to keep processes cost-effective and environmentally friendly using food grade solvents.


Assuntos
Peptídeos , Proteínas de Plantas , Animais , Solventes , Carne , Embalagem de Alimentos
2.
Food Chem ; 449: 139255, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583400

RESUMO

Effects of association between high-acyl gellan gum and whey protein on heat-induced aggregation and foaming properties of aggregates were assessed in aqueous suspensions. Associative complexes were identified by turbidity and colloidal charge below pH 6, and a balance of charge in the complexes was achieved at pH 5 with a 5:1 protein:polysaccharide ratio. As gellan gum content increased, size of aggregates formed by heating at pH 5 decreased (>1000 nm to 200-300 nm). Microscopy showed polysaccharide chains adhered to spherical aggregates at pH 5 and 6. Gellan gum added to protein before heating did not increase foam volume yet doubled foam half-life at pH 5 when used at a 2:1 protein-to-polysaccharide ratio. Microscopy showed that protein aggregates with attached gellan gum were present in drained foams. These findings indicate that gellan gum improves foam stability of heated whey protein at pH 5 by reducing aggregate size and adhering to aggregates.


Assuntos
Temperatura Alta , Polissacarídeos Bacterianos , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Concentração de Íons de Hidrogênio , Polissacarídeos Bacterianos/química , Suspensões/química , Tamanho da Partícula
3.
Foods ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231650

RESUMO

This study investigated the impact of dynamic high-pressure (DHP) treatment on the ability of whey protein isolate (WPI) to form associative complexes with pectin and to form aggregate particles after their subsequent heat treatment. Light scattering showed that DHP treatments disrupted preexisting WPI aggregates and assembled pectin chains. Complexes formed from WPI/pectin mixtures at pH 4.5 were an order of magnitude smaller when formed after DHP treatment, regardless of the degree of esterification. WPI/pectin complexes formed after DHP treatment were more stable against subsequent pH neutralization than complexes formed without DHP treatment, and WPI/high-methoxyl pectin (HMP) complexes had greater stability than WPI/low-methoxyl pectin (LMP) complexes. WPI/pectin particles prepared by thermal treatment of complexes at pH 4.5 were also smaller when prepared after DHP treatment. WPI/HMP particles were stable to subsequent pH neutralization, while WPI/LMP particles became larger after neutralization.

4.
Food Res Int ; 159: 111583, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940758

RESUMO

Red beetroot (Beta vulgaris L.) is a great source of betalains. The main betalains are the betacyanins, responsible for the purple color, and betaxanthins, which present a brownish color. These pigments can present antioxidant activity and are very unstable under certain conditions, such as temperature, extreme ranges of pH, and exposure to light. The aim of this work was to obtain beetroot extract (BE) via ultrasound and transform it into nanoparticles by using polyethylene glycol (PBE) and polyethylene glycol with low molecular weight chitosan (PCBE) as dispersants. The stability of the main betalains in the nanodispersions and the effects of the nanodispersions on the color and rheological properties of commercial Greek yogurt were evaluated. Compared to pristine BE, PCBE nanoparticles presented increased stability for the main betalains in acidic conditions (pH 3.0 and 5.0) of 56% and 22%, respectively. Both PBE and PCBE showed enhanced relative thermal stability compared to pristine BE. Furthermore, PCBE improved commercial Greek yogurt's rheological properties and color parameters. PCBE nanodispersions can be successfully applied as a color additive to commercial Greek yogurt.


Assuntos
Betalaínas , Iogurte , Betacianinas/análise , Betalaínas/análise , Betaxantinas/análise , Polietilenoglicóis , Verduras/química
5.
Food Chem ; 348: 129035, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33524690

RESUMO

In order to improve its aqueous solubility and emulsifying function, zein was partially hydrolyzed by trypsin and conjugated to chitosan oligosaccharide lactate by transglutaminase. Hydrolysis and covalent linkage to chitosan oligosaccharide was confirmed by free amine content, gel electrophoresis, and infrared spectroscopy. Enzymatic glycosylation was optimized at pH 6, 44 °C, and 4 h to bind approximately 95% of the free amines in the hydrolysates to chitosan oligosaccharide. Hydrolysis and conjugation increased solubility of zein by 47.60% and 72.93%. Hydrolysis and conjugation also decreased surface hydrophobicity by more than 20% and more than doubled emulsifying activity index, emulsion stability index, and foaming capacity. This enzymatic modification has potential to be applied to improve functional properties of other prolamins.


Assuntos
Quitosana/química , Oligossacarídeos/química , Zeína/química , Glicosilação , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Oligossacarídeos/metabolismo , Solubilidade , Transglutaminases/metabolismo , Água/química
6.
Compr Rev Food Sci Food Saf ; 9(4): 374-397, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33467840

RESUMO

Biopolymer nano- and micro-particles, fabricated from either proteins and/or polysaccharides, can be utilized as delivery systems or to modulate the physicochemical and sensory characteristics of food products. This article reviews the principles underlying the design, fabrication, and application of biopolymer particles fabricated from globular proteins, used either alone or in combination with polysaccharides, within the food industry. The properties of biopolymer particles and their impact on the physicochemical and functional properties of foods are described. The molecular characteristics and interactions of the building blocks (proteins and polysaccharides) used to assemble these particles are briefly reviewed. The major structural design principles that can be used to fabricate biopolymer particles from food-grade proteins and polysaccharides are outlined. Finally, some of the potential applications of functional biopolymer particles within foods are highlighted.

7.
Carbohydr Polym ; 239: 116247, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414456

RESUMO

Effects of adding whey protein fibrils to gels of potato starch with 8 % solids content were determined by rheology, microscopy, and calorimetry. Adding fibrils to starch at 50 % content (w/w) increased starch gelatinization temperature by 1.5 °C but decreased associated enthalpy. Fibril addition consistently reduced gel viscosity. Storage modulus (G') of gels increased with fibril content when prepared at pH3.5 but not at pH6.8. Fibrils were dispersed within imaged gels at pH3.5 for contents below 50 %, while separated phases were observed within pH3.5 gels for 50 % fibril content and within pH6.8 gels for all fibril contents. Dilution of gels led to sedimentation of predominantly starch, and both starch and protein content of sediment increased with overall fibril content. Results indicated that associative interactions between fibrils and starch contributed to synergistic increases in gel elasticity at low pH but not at neutral pH conditions under which starch and protein were poorly compatible.


Assuntos
Solanum tuberosum/química , Amido/química , Proteínas do Soro do Leite/química , Géis/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Reologia , Propriedades de Superfície , Temperatura
8.
Adv Food Nutr Res ; 88: 47-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31151728

RESUMO

Proteins are one of the essential components of nutritional food materials and an excellent source for food-grade nanomaterials. This review focuses on select examples of nanoparticles assembled naturally, found in food-relevant materials, major approaches in assembling nanoscale structure from proteins, and general applications of protein nanoparticles in food or nutrition. Animal-sourced casein and non-animal grain storage proteins and legume storage proteins are discussed in terms of their structural assemblies. Protein solubility is a key factor in assembling protein nanoparticles with desired functional properties. Desolvation is the most common technique to prepare protein nanoparticles for insoluble proteins. Well-hydrated protein assemblies have been extensively studied through electrostatic complexes, assembled with fatty acid and starch, reassembled protein structure, and nanogels. These protein-based nanoparticles have been utilized for filler materials of films, encapsulation of bioactive molecules, and stabilization of emulsions. Most studies exploiting protein-based nanoparticles have focused on developing technologies in extraction of proteins from sources and assembly of nanoparticles in different environmental conditions.


Assuntos
Proteínas Alimentares/normas , Alimentos/normas , Nanopartículas , Fenômenos Fisiológicos da Nutrição , Animais , Emulsões/normas , Hidrogéis/química , Nanogéis , Polímeros , Polissacarídeos/química , Suspensões/química
9.
Gels ; 4(3)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30674855

RESUMO

Emulsions can be prepared from protein microgel particles as an alternative to traditional emulsifiers. Prior experiments have indicated that smaller and more deformable microgels would decrease both the physical destabilization of emulsions and the diffusion-based losses of entrapped volatile molecules. The microgels were prepared from ß-lactoglobulin with an average diameter of 150 nm, 231 nm, or 266 nm; large microgels were cross-linked to decrease their deformability. Dilute emulsions of 15⁻50 µm diameter were prepared with microgels by high shear mixing. Light scattering and microscopy showed that the emulsions prepared with larger, untreated microgels possessed a larger initial droplet size, but were resistant to droplet growth during storage or after acidification, increased ionic strength, and exposure to surfactants. The emulsions prepared with cross-linked microgels emulsions were the least resistant to flocculation, creaming, and shrinkage. All emulsion droplets shrank as limonene was lost during storage, and the inability of microgels to desorb caused droplets to become non-spherical. The microgels were not displaced by Tween 20 but were displaced by excess sodium dodecyl sulfate. Hexanol diffusion and associated shrinkage of pendant droplets was not prevented by any of the microgels, yet the rate of shrinkage was reduced with the largest microgels.

10.
Gels ; 3(2)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30920511

RESUMO

Thermal treatment of protein⁻polysaccharide complexes will form nanogel particles, wherein the polysaccharide controls nanogel formation by limiting protein aggregation. To determine the impact of the chitosan molecular weight and non-interactive chains on the formation of nanogels, mixtures of α-lactalbumin were prepared with selectively-hydrolyzed chitosan containing covalently-attached polyethylene glycol chains (PEG) and heated near the protein's isoelectric point to induce formation of nanogels. Turbidity of heated mixtures indicated the formation of suspended aggregates, with greater values observed at higher pH, without attached PEG, and among samples with 8.9 kDa chitosan. Mixtures containing 113 kDa chitosan-PEG formed precipitating aggregates above pH 5, coinciding with a low-magnitude colloidal charge and average hydrodynamic radii > 400 nm. All other tested mixtures were stable to precipitation and possessed average hydrodynamic radii ~100 nm, with atomic force microscopy showing homogeneous distributions of spherical nanogel aggregates. Over all of the tested conditions, attached PEG led to no additional significant changes in the size or morphology of nanogels formed from the protein and chitosan. While PEG may have interfered with the interactions between protein and the 113 kDa chitosan, prompting greater aggregation and precipitation, PEG did not indicate any such interference for shorter chitosan chains.

11.
J Food Sci ; 75(2): N36-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20492252

RESUMO

Biopolymer nanoparticles can be formed by heating globular protein-ionic polysaccharide electrostatic complexes above the thermal denaturation temperature of the protein. This study examined how the size and concentration of biopolymer particles formed by heating beta-lactoglobulin-pectin complexes could be manipulated by controlling preparation conditions: pH, ionic strength, protein concentration, holding time, and holding temperature. Biopolymer particle size and concentration increased with increasing holding time (0 to 30 min), decreasing holding temperature (90 to 70 degrees C), increasing protein concentration (0 to 2 wt/wt%), increasing pH (4.5 to 5), and increasing salt concentration (0 to 50 mol/kg). The influence of these factors on biopolymer particle size was attributed to their impact on protein-polysaccharide interactions, and on the kinetics of nucleation and particle growth. The knowledge gained from this study will facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes.


Assuntos
Lactoglobulinas/química , Nanopartículas/química , Nanotecnologia/métodos , Pectinas/química , Biopolímeros/química , Fenômenos Químicos , Calefação , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Polissacarídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa