Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408774

RESUMO

Polyphenols are a large family of naturally occurring phytochemicals. Herein, oxyresveratrol was isolated from ethanolic crude extracts of Artocarpus lacucha Buch.-Ham., and chemically modified to derive its lipophilic analogues. Biological screening assays showed their inhibitory potency against cyclooxygenase-2 (COX-2) with very low cytotoxicity to the MRC-5 normal cell lines. At the catalytic site of COX-2, docking protocols with ChemPLP, GoldScore and AutoDock scoring functions were carried out to reveal hydrogen bonding interactions with key polar contacts and hydrophobic pi-interactions. For more accurate binding energetics, COX-2/ligand complexes at the binding region were computed in vacuo and implicit aqueous solvation using M06-2X density functional with 6-31G+(d,p) basis set. Our computational results confirmed that dihydrooxyresveratrol (4) is the putative inhibitor of human COX-2 with the highest inhibitory activity (IC50 of 11.50 ± 1.54 µM) among studied non-fluorinated analogues for further lead optimization. Selective substitution of fluorine provides a stronger binding affinity; however, lowering the cytotoxicity of a fluorinated analogue to a normal cell is challenging. The consensus among biological activities, ChemPLP docking score and the binding energies computed at the quantum mechanical level is obviously helpful for identification of oxyresveratrol analogues as a putative anti-inflammatory agent.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Estilbenos , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Estilbenos/análise , Estilbenos/farmacologia
2.
J Comput Aided Mol Des ; 33(8): 745-757, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31494804

RESUMO

Protein kinases are an important class of enzymes that play an essential role in virtually all major disease areas. In addition, they account for approximately 50% of the current targets pursued in drug discovery research. In this work, we explore the generation of structure-based quantum mechanical (QM) quantitative structure-activity relationship models (QSAR) as a means to facilitate structure-guided optimization of protein kinase inhibitors. We explore whether more accurate, interpretable QSAR models can be generated for a series of 76 N-phenylquinazolin-4-amine inhibitors of epidermal growth factor receptor (EGFR) kinase by comparing and contrasting them to other standard QSAR methodologies. The QM-based method involved molecular docking of inhibitors followed by their QM optimization within a ~ 300 atom cluster model of the EGFR active site at the M062X/6-31G(d,p) level. Pairwise computations of the interaction energies with each active site residue were performed. QSAR models were generated by splitting the datasets 75:25 into a training and test set followed by modelling using partial least squares (PLS). Additional QSAR models were generated using alignment dependent CoMFA and CoMSIA methods as well as alignment independent physicochemical, e-state indices and fingerprint descriptors. The structure-based QM-QSAR model displayed good performance on the training and test sets (r2 ~ 0.7) and was demonstrably more predictive than the QSAR models built using other methods. The descriptor coefficients from the QM-QSAR models allowed for a detailed rationalization of the active site SAR, which has implications for subsequent design iterations.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Quinases/ultraestrutura , Relação Quantitativa Estrutura-Atividade , Domínio Catalítico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Quinases/química , Teoria Quântica
3.
Molecules ; 24(23)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805692

RESUMO

Janus kinase 2 (JAK2) inhibitors represent a promising therapeutic class of anticancer agents against many myeloproliferative disorders. Bioactivity data on pIC 50 of 2229 JAK2 inhibitors were employed in the construction of quantitative structure-activity relationship (QSAR) models. The models were built from 100 data splits using decision tree (DT), support vector machine (SVM), deep neural network (DNN) and random forest (RF). The predictive power of RF models were assessed via 10-fold cross validation, which afforded excellent predictive performance with R 2 and RMSE of 0.74 ± 0.05 and 0.63 ± 0.05, respectively. Moreover, test set has excellent performance of R 2 (0.75 ± 0.03) and RMSE (0.62 ± 0.04). In addition, Y-scrambling was utilized to evaluate the possibility of chance correlation of the predictive model. A thorough analysis of the substructure fingerprint count was conducted to provide insights on the inhibitory properties of JAK2 inhibitors. Molecular cluster analysis revealed that pyrazine scaffolds have nanomolar potency against JAK2.


Assuntos
Inibidores Enzimáticos/química , Janus Quinase 2/química , Mineração de Dados , Relação Quantitativa Estrutura-Atividade
4.
Org Biomol Chem ; 16(34): 6239-6249, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30109337

RESUMO

The folate pathway is a recognized intervention point for treating parasitic and bacterial infections in humans. However, the efficacy of treatments targeting dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) has reduced due to disease-related mutations. This has prompted interest in other enzyme targets on this clinically validated pathway, including 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK). A challenge in the design of molecules to target this enzyme is that the precise mechanism of the reaction and the role of the active site residues are not fully understood. In this study, we report the first theoretical analysis of the catalytic pathway of the natural substrate using hybrid quantum mechanical/molecular mechanical (QM/MM) methods. The reaction profiles associated with three proposed general bases have been investigated, as well as the profile for two mutant enzymes, namely R92A and R82A. We identified R92 as the general base in the wildtype reaction. The predicted barriers are in good agreement with the observed experimental kcat values obtained for wildtype and mutant proteins.

5.
Pharm Biol ; 53(4): 477-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25471519

RESUMO

CONTEXT: There is a need for the discovery of novel natural and semi-synthetic sunscreen that is safe and effective. Piperine has a UV absorption band of 230-400 nm with high molar absorptivity. This compound has a high potential to be developed to sunscreen. OBJECTIVE: This study develops new UV protection compounds from piperine by using chemical synthesis. MATERIALS AND METHODS: Piperine was isolated from Piper nigrum L. (Piperaceae) fruits, converted to piperic acid by alkaline hydrolysis, and prepared as ester derivatives by chemical synthesis. The piperate derivatives were prepared as 5% o/w emulsion, and the SPF values were evaluated. The best compound was submitted to cytotoxicity test using MTT assay. RESULTS: Piperic acid was prepared in 86.96% yield. Next, piperic acid was reacted with alcohols using Steglich reaction to obtain methyl piperate, ethyl piperate, propyl piperate, isopropyl piperate, and isobutyl piperate in 62.39-92.79% yield. All compounds were prepared as 5% oil in water emulsion and measured its SPF and UVA/UVB values using an SPF-290S analyzer. The SPF values (n = 6) of the piperate derivatives were 2.68 ± 0.17, 8.89 ± 0.46, 6.86 ± 0.91, 16.37 ± 1.8, and 9.68 ± 1.71. The UVA/UVB ratios of all compounds ranged from 0.860 to 0.967. Cytotoxicity of isopropyl piperate was evaluated using human skin fibroblast cells and the IC50 was equal to 120.2 µM. DISCUSSION AND CONCLUSION: From the results, isopropyl piperate is an outstanding compound that can be developed into a UV protection agent.


Assuntos
Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Piper nigrum/química , Pele/efeitos dos fármacos , Protetores Solares/isolamento & purificação , Protetores Solares/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Ácidos Graxos Insaturados/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Pele/citologia , Pele/efeitos da radiação , Espectrofotometria Ultravioleta , Protetores Solares/toxicidade
6.
PLoS One ; 19(4): e0302851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687777

RESUMO

Allergic inflammation, which is the pathogenesis of allergic rhinitis and asthma, is associated with disruption of the airway epithelial barrier due to the effects of type 2 inflammatory cytokines, i.e. interleukin-4 and interleukin-13 (IL-4/13). The anti-allergic inflammatory effect of ß-eudesmol (BE) on the tight junction (TJ) of the airway epithelium has not previously been reported. Herein, the barrier protective effect of BE was determined by measurement of transepithelial electrical resistance and by paracellular permeability assay in an IL-4/13-treated 16HBE14o- monolayer. Pre-treatment of BE concentration- and time- dependently inhibited IL-4/13-induced TJ barrier disruption, with the most significant effect observed at 20 µM. Cytotoxicity analyses showed that BE, either alone or in combination with IL-4/13, had no effect on cell viability. Western blot and immunofluorescence analyses showed that BE inhibited IL-4/13-induced mislocalization of TJ components, including occludin and zonula occludens-1 (ZO-1), without affecting the expression of these two proteins. In addition, the mechanism of the TJ-protective effect of BE was mediated by inhibition of IL-4/13-induced STAT6 phosphorylation, in which BE might serve as an antagonist of cytokine receptors. In silico molecular docking analysis demonstrated that BE potentially interacted with the site I pocket of the type 2 IL-4 receptor, likely at Asn-126 and Tyr-127 amino acid residues. It can therefore be concluded that BE is able to prevent IL-4/13-induced TJ disassembly by interfering with cytokine-receptor interaction, leading to suppression of STAT6-induced mislocalization of occludin and ZO-1. BE is a promising candidate for a therapeutic intervention for inflammatory airway epithelial disorders driven by IL-4/13.


Assuntos
Células Epiteliais , Interleucina-13 , Interleucina-4 , Fator de Transcrição STAT6 , Junções Íntimas , Proteína da Zônula de Oclusão-1 , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-13/metabolismo , Fator de Transcrição STAT6/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
7.
Front Vet Sci ; 10: 1280273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192725

RESUMO

Feline infectious peritonitis (FIP) is a grave and frequently lethal ailment instigated by feline coronavirus (FCoV) in wild and domestic feline species. The spike (S) protein of FCoV assumes a critical function in viral ingress and infection, thereby presenting a promising avenue for the development of a vaccine. In this investigation, an immunoinformatics approach was employed to ascertain immunogenic epitopes within the S-protein of FIP and formulate an innovative vaccine candidate. By subjecting the amino acid sequence of the FIP S-protein to computational scrutiny, MHC-I binding T-cell epitopes were predicted, which were subsequently evaluated for their antigenicity, toxicity, and allergenicity through in silico tools. Our analyses yielded the identification of 11 potential epitopes capable of provoking a robust immune response against FIPV. Additionally, molecular docking analysis demonstrated the ability of these epitopes to bind with feline MHC class I molecules. Through the utilization of suitable linkers, these epitopes, along with adjuvants, were integrated to design a multi-epitope vaccine candidate. Furthermore, the stability of the interaction between the vaccine candidate and feline Toll-like receptor 4 (TLR4) was established via molecular docking and molecular dynamics simulation analyses. This suggests good prospects for future experimental validation to ascertain the efficacy of our vaccine candidate in inducing a protective immune response against FIP.

8.
J Mol Graph Model ; 68: 29-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27343740

RESUMO

Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/química , Liases/química , Simulação de Dinâmica Molecular , Teoria Quântica , Biocatálise , Proteínas Fúngicas/metabolismo , Cinética , Malatos/química , Malatos/metabolismo , Análise de Componente Principal , Especificidade por Substrato , Termodinâmica
9.
J Phys Chem B ; 119(35): 11473-84, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26224328

RESUMO

The isocitrate lyase (ICL) superfamily catalyzes the cleavage of the C(2)-C(3) bond of various α-hydroxy acid substrates. Members of the family are found in bacteria, fungi, and plants and include ICL itself, oxaloacetate hydrolase (OAH), 2-methylisocitrate lyase (MICL), and (2R,3S)-dimethylmalate lyase (DMML) among others. ICL and related targets have been the focus of recent studies to treat bacterial and fungal infections, including tuberculosis. The catalytic process by which this family achieves C(2)-C(3) bond breaking is still not clear. Extensive structural studies have been performed on this family, leading to a number of plausible proposals for the catalytic mechanism. In this paper, we have applied quantum mechanical/molecular mechanical (QM/MM) methods to the most recently reported family member, DMML, to assess whether any of the mechanistic proposals offers a clear energetic advantage over the others. Our results suggest that Arg161 is the general base in the reaction and Cys124 is the general acid, giving rise to a rate-determining barrier of approximately 10 kcal/mol.


Assuntos
Isocitrato Liase/química , Carbono/química , Catálise , Modelos Químicos , Simulação de Dinâmica Molecular , Propionatos/química , Piruvatos/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa