Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Stroke Cerebrovasc Dis ; 33(1): 107441, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966094

RESUMO

OBJECTIVES: Patients who have recently suffered a transient ischemic attack (TIA) or minor ischemic stroke are at increased risk of cognitive impairment. In the present study, we aimed to investigate the effect of a 1-year exercise intervention on cognitive functioning up to 2 years post intervention. MATERIAL AND METHODS: We conducted a single-blind randomized controlled trial to investigate the effect of an exercise intervention on cognitive functioning, compared with usual care, for up to 2 years. Patients with a TIA or minor stroke were randomly allocated to an intervention group receiving the 1-year exercise intervention (n = 60) or to usual care (n = 59). Outcome measures were assessed at baseline and after 1 and 2 years. We measured cognition with neuropsychological tests on three domains: (1) executive functioning, (2) attention-psychomotor speed, and (3) memory. Linear mixed models were used for longitudinal data to determine the effect of the exercise intervention on cognitive functioning. Statistical analyses were performed using IBM SPSS software 24.0. RESULTS: We found that over the two years study period -and corrected for age, sex, and educational level- the intervention group on average improved significantly more in executive functioning than the control group (ß = 0.13; 95 % CI [0.02 to 0.25]; p = 0.03). No significant intervention effects were found on either memory or attention-psychomotor speed. CONCLUSIONS: Our data show that a 1-year exercise intervention significantly improved executive functioning over time, compared to usual care. We recommend that health care professionals consider broadening standard secondary stroke prevention treatment in patients with TIA/minor stroke by adding exercise and physical activity.


Assuntos
Ataque Isquêmico Transitório , Treinamento Resistido , Acidente Vascular Cerebral , Humanos , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/terapia , Ataque Isquêmico Transitório/complicações , Método Simples-Cego , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Cognição
2.
Cell Mol Life Sci ; 79(6): 321, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622133

RESUMO

BACKGROUND: Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS: We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS: Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS: Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.


Assuntos
Relógios Biológicos , Mecanorreceptores , Músculo Esquelético , Atrofia Muscular , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Elevação dos Membros Posteriores , Masculino , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Sensors (Basel) ; 23(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177688

RESUMO

Altered tibiofemoral contact forces represent a risk factor for osteoarthritis onset and progression, making optimization of the knee force distribution a target of treatment strategies. Musculoskeletal model-based simulations are a state-of-the-art method to estimate joint contact forces, but they typically require laboratory-based input and skilled operators. To overcome these limitations, ambulatory methods, relying on inertial measurement units, have been proposed to estimated ground reaction forces and, consequently, knee contact forces out-of-the-lab. This study proposes the use of a full inertial-capture-based musculoskeletal modelling workflow with an underlying probabilistic principal component analysis model trained on 1787 gait cycles in patients with knee osteoarthritis. As validation, five patients with knee osteoarthritis were instrumented with 17 inertial measurement units and 76 opto-reflective markers. Participants performed multiple overground walking trials while motion and inertial capture methods were synchronously recorded. Moderate to strong correlations were found for the inertial capture-based knee contact forces compared to motion capture with root mean square error between 0.15 and 0.40 of body weight. The results show that our workflow can inform and potentially assist clinical practitioners to monitor knee joint loading in physical therapy sessions and eventually assess long-term therapeutic effects in a clinical context.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/terapia , Captura de Movimento , Fenômenos Biomecânicos , Articulação do Joelho , Caminhada , Marcha
4.
Clin Anat ; 36(6): 848-857, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36373980

RESUMO

Flatfoot deformity is a prevalent hind- and midfoot disorder. Given its complexity, single-plane radiological measurements omit case-specific joint interaction and bone shape variations. Three-dimensional medical imaging assessment using statistical shape models provides a complete approach in characterizing bone shape variations unique to flatfoot condition. This study used statistical shape models to define specific bone shape variations of the subtalar, talonavicular, and calcaneocuboid joints that characterize flatfoot deformity, that differentiate them from healthy controls. Bones of the aforementioned joints were segmented from computed tomography scans of 40 feet. The three-dimensional hindfoot alignment angle categorized the population into 18 flatfoot subjects (≥7° valgus) and 22 controls. Statistical shape models for each joint were defined using the entire study cohort. For each joint, an average weighted shape parameter was calculated for each mode of variation, and then compared between flatfoot and controls. Significance was set at p < 0.05, with values between 0.05 ≤ p < 0.1 considered trending towards significance. The flatfoot population showed a more adducted talar head, inferiorly inclined talar neck, and posteriorly orientated medial subtalar articulation compare to controls, coupled with more navicular eversion, shallower navicular cup, and more prominent navicular tuberosity. The calcaneocuboid joint presented trends of a more adducted calcaneus, more abducted cuboid, narrower calcaneal roof, and less prominent cuboid beak compared to controls. Statistical shape model analysis identified unique shape variations which may enhance understanding and computer-aided models of the intricacies of flatfoot, leading to better diagnosis and, ultimately, surgical treatment.


Assuntos
Calcâneo , Pé Chato , Articulação Talocalcânea , Tálus , Humanos , Pé Chato/diagnóstico por imagem , Pé Chato/cirurgia , , Calcâneo/diagnóstico por imagem , Articulação Talocalcânea/diagnóstico por imagem
5.
J Appl Biomech ; 39(5): 273-283, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751904

RESUMO

The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.

6.
J Appl Biomech ; 39(5): 284-293, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348849

RESUMO

In this review, we elaborate on how musculoskeletal (MSK) modeling combined with dynamic movement simulation is gradually evolving from a research tool to a promising in silico tool to assist medical doctors and physical therapists in decision making by providing parameters relating to dynamic MSK function and loading. This review primarily focuses on our own and related work to illustrate the framework and the interpretation of MSK model-based parameters in patients with 3 different conditions, that is, degenerative joint disease, cerebral palsy, and adult spinal deformities. By selecting these 3 clinical applications, we also aim to demonstrate the differing levels of clinical readiness of the different simulation frameworks introducing in silico model-based biomarkers of motor function to inform MSK rehabilitation and treatment, with the application for adult spinal deformities being the most recent of the 3. Based on these applications, barriers to clinical integration and positioning of these in silico technologies within standard clinical practice are discussed in the light of specific challenges related to model assumptions, required level of complexity and personalization, and clinical implementation.

7.
PLoS Comput Biol ; 17(6): e1008369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170903

RESUMO

Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.


Assuntos
Posição Ortostática , Caminhada , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Humanos , Músculo Esquelético/fisiologia , Robótica/instrumentação , Dispositivos Eletrônicos Vestíveis
8.
Exp Brain Res ; 240(4): 1029-1044, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35171307

RESUMO

Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements. We sought to explore how such changes in accuracy relate to changes in finger, shoulder and elbow movements during performance of reaching movements with the normal effects of gravity, unconstrained hand movement, and stable target locations. Three-dimensional kinematic data and electromyography were collected in 14 young (25 ± 6 years) and 10 older adults (68 ± 3 years) during second-long reaches to 3 targets aligned vertically in front of the participants. Older adults took longer to initiate a movement than the young adults and were more variable and inaccurate in their initial and final movements. Target height had greater effect on trajectory curvature variability in older than young adults, with angle variability relative to target position being greater in older adults around the time of peak speed. There were significant age-related differences in use of the multiple degrees of freedom of the upper extremity, with less variability in shoulder abduction in the older group. Muscle activation patterns were similar, except for a higher biceps-triceps co-contraction and tonic levels of some proximal muscle activation. These results show an age-related deficit in the motor planning and online correction of reaching movements against a predictable force (i.e., gravity) when it is not compensated by mechanical support.


Assuntos
Atividades Cotidianas , Movimento , Idoso , Envelhecimento , Braço , Fenômenos Biomecânicos , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Projetos Piloto , Adulto Jovem
9.
Br J Sports Med ; 56(9): 490-498, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35135826

RESUMO

OBJECTIVES: Vertical jump performance (height) is a more representative metric for knee function than horizontal hop performance (distance) in healthy individuals. It is not known what the biomechanical status of athletes after anterior cruciate ligament (ACL) reconstruction (ACLR) is at the time they are cleared to return to sport (RTS) or whether vertical performance metrics better evaluate knee function. METHODS: Standard marker-based motion capture and electromyography (EMG) were collected from 26 male athletes cleared to RTS after ACLR and 22 control healthy subjects during single leg vertical jumps (SLJ) and single leg drop jumps (SLDJ). Performance outcomes, jump height and the Reactive Strength Index, were calculated. Sagittal plane kinematics, joint moments and joint work were obtained using inverse dynamics and lower limb muscle forces were computed using an EMG-constrained musculoskeletal model. Muscle contribution was calculated as a percentage of the impulse of all muscle forces in the model. Between-limb and between-group differences were explored using mixed models analyses. RESULTS: Jump performance, assessed by jump height and Reactive Strength Index, was significantly lower in the involved than the uninvolved limb and controls, with large effect sizes. For the ACLR group, jump height limb symmetry index was 83% and 77% during the SLJ and SLDJ, respectively. Work generation was significantly less in the involved knee compared to uninvolved limb and controls during the SLJ (p<0.001; d=1.19; p=0.003, d=0.91, respectively) and during the SLDJ (p<0.001; d=1.54; p=0.002, d=1.05, respectively). Hamstrings muscle contribution was greater in the involved compared to the uninvolved limb and controls, whereas soleus contribution was lower in the involved limb compared to controls. CONCLUSIONS: During vertical jumps, male athletes after ACLR at RTS still exhibit knee biomechanical deficits, despite symmetry in horizontal functional performance and strength tests. Vertical performance metrics like jump height and RSI can better identify interlimb asymmetries than the more commonly used hop distance and should be included in the testing battery for the RTS.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Atletas , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho , Perna (Membro) , Extremidade Inferior/fisiologia , Masculino , Volta ao Esporte
10.
Br J Sports Med ; 56(5): 249-256, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33687928

RESUMO

BACKGROUND: We evaluated the lower limb status of athletes after anterior cruciate ligament reconstruction (ACLR) during the propulsion and landing phases of a single leg hop for distance (SLHD) task after they had been cleared to return to sport. We wanted to evaluate the biomechanical components of the involved (operated) and uninvolved legs of athletes with ACLR and compare these legs with those of uninjured athletes (controls). METHODS: We captured standard video-based three-dimensional motion and electromyography (EMG) in 26 athletes after ACLR and 23 healthy controls during SLHD and calculated lower limb and trunk kinematics. We calculated lower limb joint moments and work using inverse dynamics and computed lower limb muscle forces using an EMG-constrained musculoskeletal modelling approach. Between-limb (within ACLR athletes) and between-group differences (between ACLR athletes and controls) were evaluated using paired and independent sample t-tests, respectively. RESULTS: Significant differences in kinematics (effect sizes ranging from 0.42 to 1.56), moments (0.39 to 1.08), and joint work contribution (0.55 to 1.04) were seen between the involved and uninvolved legs, as well as between groups. Athletes after ACLR achieved a 97%±4% limb symmetry index in hop distance but the symmetry in work done by the knee during propulsion was only 69%. During landing, the involved knee absorbed less work than the uninvolved, while the uninvolved knee absorbed more work than the control group. Athletes after ACLR compensated for lower knee work with greater hip work contribution and by landing with more hip flexion, anterior pelvis tilt, and trunk flexion. CONCLUSION: Symmetry in performance on a SLHD test does not ensure symmetry in lower limb biomechanics. The distance hopped is a poor measure of knee function, and largely reflects hip and ankle function. Male athletes after ACLR selectively unload the involved limb but outperform controls on the uninvolved knee.


Assuntos
Lesões do Ligamento Cruzado Anterior , Perna (Membro) , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Extremidade Inferior/fisiologia , Masculino , Máscaras , Volta ao Esporte
11.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458937

RESUMO

This study's aim is threefold: (I) Evaluate movement quality parameters of gait in people with hip or knee osteoarthritis (OA) compared to asymptomatic controls from a single trunk-worn 3D accelerometer. (II) Evaluate the sensitivity of these parameters to capture changes at 6-weeks, 3-, 6-, and 12-months following total knee arthroplasty (TKA). (III) Investigate whether observed changes in movement quality from 6-weeks and 12-months post-TKA relates to changes in patient-reported outcome measures (PROMs). We invited 20 asymptomatic controls, 20 people with hip OA, 18 people pre- and post-TKA to our movement lap. They wore a single trunk-worn accelerometer and walked at a self-selected speed. Movement quality parameters (symmetry, complexity, smoothness, and dynamic stability) were calculated from the 3D acceleration signal. Between groups and between timepoints comparisons were made, and changes in movement quality were correlated with PROMs. We found significant differences in symmetry and stability in both OA groups. Post-TKA, most parameters reflected an initial decrease in movement quality at 6-weeks post-TKA, which mostly normalised 6-months post-TKA. Finally, improved movement quality relates to improvements in PROMs. Thus, a single accelerometer can characterise movement quality in both OA groups and post-TKA. The correlation shows the potential to monitor movement quality in a clinical setting to inform objective, data-driven personalised rehabilitation.


Assuntos
Artroplastia do Joelho , Osteoartrite do Quadril , Osteoartrite do Joelho , Acelerometria , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia
12.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632107

RESUMO

Osteoarthritis is a common musculoskeletal disorder. Classification models can discriminate an osteoarthritic gait pattern from that of control subjects. However, whether the output of learned models (probability of belonging to a class) is usable for monitoring a person's functional recovery status post-total knee arthroplasty (TKA) is largely unexplored. The research question is two-fold: (I) Can a learned classification model's output be used to monitor a person's recovery status post-TKA? (II) Is the output related to patient-reported functioning? We constructed a logistic regression model based on (1) pre-operative IMU-data of level walking, ascending, and descending stairs and (2) 6-week post-operative data of walking, ascending-, and descending stairs. Trained models were deployed on subjects at three, six, and 12 months post-TKA. Patient-reported functioning was assessed by the KOOS-ADL section. We found that the model trained on 6-weeks post-TKA walking data showed a decrease in the probability of belonging to the TKA class over time, with moderate to strong correlations between the model's output and patient-reported functioning. Thus, the LR-model's output can be used as a screening tool to follow-up a person's recovery status post-TKA. Person-specific relationships between the probabilities and patient-reported functioning show that the recovery process varies, favouring individual approaches in rehabilitation.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Artroplastia do Joelho/reabilitação , Marcha , Humanos , Osteoartrite do Joelho/cirurgia , Recuperação de Função Fisiológica , Caminhada
13.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35590949

RESUMO

Inertial capture (InCap) systems combined with musculoskeletal (MSK) models are an attractive option for monitoring 3D joint kinematics in an ecological context. However, the primary limiting factor is the sensor-to-segment calibration, which is crucial to estimate the body segment orientations. Walking, running, and stair ascent and descent trials were measured in eleven healthy subjects with the Xsens InCap system and the Vicon 3D motion capture (MoCap) system at a self-selected speed. A novel integrated method that combines previous sensor-to-segment calibration approaches was developed for use in a MSK model with three degree of freedom (DOF) hip and knee joints. The following were compared: RMSE, range of motion (ROM), peaks, and R2 between InCap kinematics estimated with different calibration methods and gold standard MoCap kinematics. The integrated method reduced the RSME for both the hip and the knee joints below 5°, and no statistically significant differences were found between MoCap and InCap kinematics. This was consistent across all the different analyzed movements. The developed method was integrated on an MSK model workflow, and it increased the sensor-to-segment calibration accuracy for an accurate estimate of 3D joint kinematics compared to MoCap, guaranteeing a clinical easy-to-use approach.


Assuntos
Articulação do Joelho , Caminhada , Fenômenos Biomecânicos , Calibragem , Marcha , Humanos , Amplitude de Movimento Articular
14.
Foot Ankle Surg ; 28(7): 906-911, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34955405

RESUMO

BACKGROUND: Debate exists whether adult acquired flatfoot deformity develops secondary to tibialis posterior (TibPost) tendon insufficiency, failure of the ligamentous structures, or a combination of both. AIM: The aim of this study is to determine the contribution of the different medial ligaments in the development of acquired flatfoot pathology. Also to standardise cadaveric flatfoot models for biomechanical research and orthopaedic training. METHODS: Five cadaveric feet were tested on a dynamic gait simulator. Following tests on the intact foot, the medial ligaments - fascia plantaris (FP), the spring ligament complex (SLC) and interosseous talocalcaneal ligament (ITCL) - were sectioned sequentially. Joint kinematics were analysed for each condition, with and without force applied to TibPost. RESULTS: Eliminating TibPost resulted in higher internal rotation of the calcaneus following the sectioning of FP and SLC (d>1.28, p = 0.08), while sectioning ITCL resulted in higher external rotation without TibPost (d = 1.24, p = 0.07). Sequential ligament sectioning induced increased flattening of Meary's angle. CONCLUSION: Function of TibPost and medial ligaments is not mutually distinctive. The role of ITCL should not be neglected in flatfoot pathology; it is vital to section this ligament to develop flatfoot in cadaveric models.


Assuntos
Pé Chato , Adulto , Fenômenos Biomecânicos , Cadáver , Pé Chato/cirurgia , Marcha , Humanos , Ligamentos Articulares/cirurgia , Tiazóis
15.
Exp Brain Res ; 239(12): 3585-3600, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591126

RESUMO

Contributions from premotor and supplementary motor areas to reaching behavior in aging humans are not well understood. The objective of these experiments was to examine effects of perturbations to specific cortical areas on the control of unconstrained reaches against gravity by younger and older adults. Double-pulse transcranial magnetic stimulation (TMS) was applied to scalp locations targeting primary motor cortex (M1), dorsal premotor area (PMA), supplementary motor area (SMA), or dorsolateral prefrontal cortex (DLPFC). Stimulation was intended to perturb ongoing activity in the targeted cortical region before or after a visual cue to initiate moderately paced reaches to one of three vertical target locations. Regional effects were observed in movement amplitude both early and late in the reach. Perturbation of PMA increased reach distance before the time of peak velocity to a greater extent than all other regions. Reaches showed greater deviation from a straight-line path around the time of peak velocity and greater overall curvature with perturbation of PMA and M1 relative to SMA and DLPFC. The perturbation increased positional variability of the reach path at the time of peak velocity and the time elapsing after peak velocity. Although perturbations had stronger effects on reaches by younger subjects, this group exhibited less reach path variability at the time of peak velocity and required less time to adjust the movement trajectory thereafter. These findings support the role of PMA in visually guided reaching and suggest an age-related change in sensorimotor processing, possibly due to a loss of cortical inhibitory control.


Assuntos
Córtex Motor , Desempenho Psicomotor , Idoso , Humanos , Movimento , Projetos Piloto , Estimulação Magnética Transcraniana
16.
J Shoulder Elbow Surg ; 30(3): 561-571, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32707326

RESUMO

BACKGROUND: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative functional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can support surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method for measuring deltoid and rotator cuff elongation. METHODS: Complete scapular and humeral models were extracted from computed tomography scans of 40 subjects. First, a statistical shape model of the complete humerus was created and evaluated to identify the muscle attachment points. Next, a muscle wrapping algorithm was developed to identify the muscle paths and to compute muscle lengths and elongations after reverse shoulder arthroplasty implantation. The accuracy of the muscle attachment points and the muscle elongation measurements was evaluated for the 40 subjects by use of both complete and artificially created partial humeral models. Additionally, the muscle elongation measurements were evaluated for a set of 50 arthritic shoulder joints. Finally, a sensitivity analysis was performed to evaluate the impact of implant positioning on deltoid and rotator cuff elongation. RESULTS: For the complete humeral models, all muscle attachment points were identified with a median error < 3.5 mm. For the partial humeral models, the errors on the deltoid attachment point largely increased. Furthermore, all muscle elongation measurements showed an error < 1 mm for 75% of the subjects for both the complete and partial humeral models. For the arthritic shoulder joints, the errors on the muscle elongation measurements were <2 mm for 75% of the subjects. Finally, the sensitivity analysis showed that muscle elongations were affected by implant positioning. DISCUSSION: This study presents an automated method for accurately measuring muscle elongations during preoperative planning of shoulder arthroplasty. The results show that the accuracy in measuring muscle elongations is higher than the accuracy in indicating the muscle attachment points. Hence, muscle elongation measurements are insensitive to the observed errors on the muscle attachment points. Related to this finding, muscle elongations can be accurately measured for both a complete humeral model and a partial humeral model. Because the presented method also showed accurate results for arthritic shoulder joints, it can be used during preoperative shoulder arthroplasty planning, in which typically only the proximal humerus is present in the scan and in which bone arthropathy can be present. As the muscle elongations are sensitive to implant positioning, surgeons can use the muscle elongation measurements to refine their surgical plan.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Músculo Deltoide , Humanos , Úmero/cirurgia , Amplitude de Movimento Articular , Manguito Rotador/cirurgia , Ombro , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia
17.
Br J Sports Med ; 54(3): 139-153, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31142471

RESUMO

OBJECTIVE: To systematically review the biomechanical deficits after ACL reconstruction (ACLR) during single leg hop for distance (SLHD) testing and report these differences compared with the contralateral leg and with healthy controls. DESIGN: Systematic review with meta-analysis. DATA SOURCES: A systematic search in Pubmed (Ovid), EMBASE, CINAHL, Scopus, Web of Science, PEDro, SPORTDiscus, Cochrane Library, grey literature and trial registries, was conducted from inception to 1 April 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies reporting kinematic, kinetic and/or electromyographic data of the ACLR limb during SLHD with no language limits. RESULTS: The literature review yielded 1551 articles and 19 studies met the inclusion criteria. Meta-analysis revealed strong evidence of lower peak knee flexion angle and knee flexion moments during landing compared with the uninjured leg and with controls. Also, moderate evidence (with large effect size) of lower knee power absorption during landing compared with the uninjured leg. No difference was found in peak vertical ground reaction force during landing. Subgroup analyses revealed that some kinematic variables do not restore with time and may even worsen. CONCLUSION: During SLHD several kinematic and kinetic deficits were detected between limbs after ACLR, despite adequate SLHD performance. Measuring only hop distance, even using the healthy leg as a reference, is insufficient to fully assess knee function after ACLR. PROSPERO trial registration number CRD42018087779.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Teste de Esforço , Joelho/fisiopatologia , Desempenho Físico Funcional , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Humanos , Extremidade Inferior
18.
J Neuroeng Rehabil ; 17(1): 6, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941518

RESUMO

BACKGROUND: Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied. METHODS: Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants' Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40-60, 60-80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE). RESULTS: The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating. CONCLUSION: We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.


Assuntos
Terapia por Exercício/métodos , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Jogos de Vídeo , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
19.
J Neuroeng Rehabil ; 17(1): 65, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430036

RESUMO

BACKGROUND: Apart from biomechanical alterations in movement patterns, it is known that movement limitations in persons with knee osteoarthritis (PwKOA) are related to an individual's perception and belief regarding pain and disability. To gain more insights into the functional movement behaviour of PwKOA in a clinical setting, inertial sensor technology can be applied. This study first aims to evaluate the ability of inertial sensors to discriminate between healthy controls (HC) and PwKOA. Secondly, this study aims to determine the relationship between movement behaviour, pain-related factors and disability scores. METHODS: Twelve HC and 19 PwKOA were included. Five repetitions of six functional movement tasks (walking, forward lunge, sideward lunge, ascent and descent stairs, single leg squat and sit-to-stand) were simultaneously recorded by the inertial sensor system and a camera-based motion analysis system. Statistically significant differences in angular waveforms of the trunk, pelvis and lower limb joints between HC and PwKOA were determined using one-dimensional statistical parametric mapping (SPM1D). The Knee injury and Osteoarthritis Outcome Score and TAMPA scale for Kinesiophobia were used to evaluate the relationship between discriminating joint motion, pain-related factors and disability using spearman's correlation coefficients. RESULTS: PwKOA had significantly less trunk rotation, internal pelvis rotation and knee flexion ROM during walking. Additionally, the reduced knee flexion (i.e. at the end of the stance phase and swing phase) was related to increased level of perceived pain. During the sideward lunge, PwKOA had significantly less knee flexion, ankle plantarflexion and hip abduction. This decreased hip abduction (i.e. during stance) was related to higher fear of movement. Finally, PwKOA had significantly less knee flexion during the forward lunge, single leg squat and during ascent and descent stairs. No significant correlations were observed with disability. CONCLUSIONS: Inertial sensors were able to discriminate between movement characteristics of PwKOA and HC. Additionally, significant relationships were found between joint motion, perceived pain and fear of movement. Since inertial sensors can be used outside the laboratory setting, these results are promising as they indicate the ability to evaluate movement deviations. Further research is required to enable measurements of small movement deviations in clinically relevant tasks.


Assuntos
Acelerometria/instrumentação , Atividade Motora/fisiologia , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Extremidade Inferior/fisiopatologia , Masculino , Pessoa de Meia-Idade
20.
J Shoulder Elbow Surg ; 29(5): 1050-1058, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31983533

RESUMO

BACKGROUND: Assessment of glenoid bone defects is important to select the optimal glenoid component design during shoulder arthroplasty planning and implantation. This study presents a fully automated method to describe glenoid bone loss using 3-dimensional measurements without the need for a healthy contralateral reference scapula. METHODS: The native shape of the glenoid is reconstructed by fitting a statistical shape model (SSM) of the scapula. The total vault loss percentage, local vault loss percentages, defect depth, defect area percentage, and subluxation distance and region are computed based on a comparison of the reconstructed and eroded glenoids. The method is evaluated by comparing its results with a contralateral bone-based reconstruction approach in a data set of 34 scapula and humerus pairs with unilateral glenoid bone defects. RESULTS: The SSM-based defect measurements deviated from the contralateral bone-based measurements with mean absolute differences of 5.5% in the total vault loss percentage, 4.5% to 8.0% in the local vault loss percentages, 1.9 mm in the defect depth, 14.8% in the defect area percentage, and 1.6 mm in the subluxation distance. The SSM-based method was statistically equivalent to the contralateral bone-based method for all parameters except the defect area percentage. CONCLUSION: The presented method is able to automatically analyze glenoid bone defects using 3-dimensional measurements without the need for a healthy contralateral bone.


Assuntos
Cavidade Glenoide/diagnóstico por imagem , Cavidade Glenoide/patologia , Imageamento Tridimensional , Luxação do Ombro/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Artroplastia do Ombro/instrumentação , Humanos , Modelos Estatísticos , Luxação do Ombro/cirurgia , Articulação do Ombro/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa