Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.369
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 417-447, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902312

RESUMO

Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell-mediated immunity.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Animais , Humanos , Imunidade Celular , Células Matadoras Naturais
2.
Cell ; 187(6): 1527-1546.e25, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412860

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo
3.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075754

RESUMO

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
4.
Cell ; 185(20): 3823-3837.e23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179672

RESUMO

Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.


Assuntos
Escherichia coli , Organelas , Escherichia coli/genética , Organelas/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Solventes/análise , Solventes/metabolismo
5.
Cell ; 185(26): 4937-4953.e23, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563664

RESUMO

To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.


Assuntos
Cromatina , Cardiopatias Congênitas , Humanos , Cromatina/genética , Cardiopatias Congênitas/genética , Coração , Mutação , Análise de Célula Única
6.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35489334

RESUMO

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Assuntos
Cannabis , Doenças Cardiovasculares , Alucinógenos , Analgésicos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Células Endoteliais , Genisteína/farmacologia , Genisteína/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos , Receptor CB1 de Canabinoide , Receptores de Canabinoides
7.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872000

RESUMO

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Assuntos
Diferenciação Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Antígeno CD56/metabolismo , Muromegalovirus/imunologia , Linhagem da Célula/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos Knockout , Células Cultivadas
8.
Nat Immunol ; 24(11): 1803-1812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828377

RESUMO

The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Linfócitos , Imunidade Adaptativa , Células Clonais
9.
Nat Immunol ; 24(10): 1685-1697, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697097

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.


Assuntos
Infecções por Citomegalovirus , Viroses , Humanos , Camundongos , Animais , Imunidade Treinada , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Memória Imunológica
10.
Nat Immunol ; 22(5): 627-638, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859404

RESUMO

Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT-induced cross-regulatory program. Thus, an intricate crosstalk exists between cytokine signaling pathways, which governs NK cell responses.


Assuntos
Epigênese Genética/imunologia , Infecções por Herpesviridae/imunologia , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Fatores de Transcrição STAT/metabolismo , Animais , Separação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Redes Reguladoras de Genes/imunologia , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata/genética , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Muromegalovirus/imunologia , Análise de Componente Principal , RNA-Seq , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
Immunity ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878769

RESUMO

Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.

12.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078710

RESUMO

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Assuntos
Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mecanotransdução Celular , Neurônios/fisiologia , Transdução de Sinais , Gânglio Espiral da Cóclea/fisiologia , Animais , Análise por Conglomerados , Marcadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Mutação , Neuroglia/fisiologia , Análise de Sequência de RNA
13.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550791

RESUMO

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Assuntos
Modelos Imunológicos , Neoplasias Experimentais/imunologia , Organoides/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Antígeno B7-H1/imunologia , Técnicas de Cocultura , Feminino , Humanos , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Organoides/patologia
14.
Immunity ; 56(3): 531-546.e6, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36773607

RESUMO

Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Humanos , Animais , Camundongos , Células Matadoras Naturais , Imunidade Adaptativa , Linfócitos T , Imunidade Inata
15.
Cell ; 171(4): 795-808.e12, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056343

RESUMO

Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Whether tissue-resident lymphocytes confer early antiviral immunity at local sites of primary infection prior to the initiation of circulating responses is not well understood. Furthermore, the kinetics of initial antiviral responses at sites of infection remain unclear. Here, we show that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection. Ablation of Zfp683-dependent liver ILC1 lead to increased viral load in the presence of intact adaptive and innate immune cells critical for mouse cytomegalovirus (MCMV) clearance. Swift production of interleukin (IL)-12 by tissue-resident XCR1+ conventional dendritic cells (cDC1) promoted ILC1 production of IFN-γ in a STAT4-dependent manner to limit early viral burden. Thus, ILC1 contribute an essential role in viral immunosurveillance at sites of initial infection in response to local cDC1-derived proinflammatory cytokines.


Assuntos
Infecções por Herpesviridae/imunologia , Linfócitos/imunologia , Muromegalovirus/fisiologia , Animais , Infecções por Herpesviridae/patologia , Imunidade Inata , Vigilância Imunológica , Inflamação/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Fígado/citologia , Fígado/imunologia , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Replicação Viral
17.
Physiol Rev ; 104(1): 199-251, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477622

RESUMO

The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.


Assuntos
Hipertensão , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Pressão Sanguínea/fisiologia , Rim , Hemodinâmica , Sódio
18.
Nat Immunol ; 20(7): 865-878, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086333

RESUMO

Natural killer (NK) cells are critical mediators of host immunity to pathogens. Here, we demonstrate that the endoplasmic reticulum stress sensor inositol-requiring enzyme 1 (IRE1α) and its substrate transcription factor X-box-binding protein 1 (XBP1) drive NK cell responses against viral infection and tumors in vivo. IRE1α-XBP1 were essential for expansion of activated mouse and human NK cells and are situated downstream of the mammalian target of rapamycin signaling pathway. Transcriptome and chromatin immunoprecipitation analysis revealed c-Myc as a new and direct downstream target of XBP1 for regulation of NK cell proliferation. Genetic ablation or pharmaceutical blockade of IRE1α downregulated c-Myc, and NK cells with c-Myc haploinsufficency phenocopied IRE1α-XBP1 deficiency. c-Myc overexpression largely rescued the proliferation defect in IRE1α-/- NK cells. Like c-Myc, IRE1α-XBP1 also promotes oxidative phosphorylation in NK cells. Overall, our study identifies a IRE1α-XBP1-cMyc axis in NK cell immunity, providing insight into host protection against infection and cancer.


Assuntos
Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Regulação da Expressão Gênica , Genes myc , Imunidade/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Biomarcadores , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citotoxicidade Imunológica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma Experimental , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo
19.
Nat Immunol ; 20(8): 1004-1011, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263280

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner.


Assuntos
Memória Imunológica/imunologia , Fígado/imunologia , Linfócitos/imunologia , Glicoproteínas de Membrana/imunologia , Muromegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Imunidade Inata/imunologia , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Fígado/citologia , Camundongos
20.
Cell ; 165(1): 234-246, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26924578

RESUMO

The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-bcr/análise , Proteínas Proto-Oncogênicas c-bcr/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa