Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(4): H900-H906, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363213

RESUMO

Imaging tools are crucial for studying the vascular network and its barrier function in various physiopathological conditions. Shortwave infrared (SWIR) window optical imaging allows noninvasive, in-depth exploration. We applied SWIR imaging, combined with vessel segmentation and deep learning analyses, to study real-time dextran probe extravasation in mice experiencing intermittent hypoxia (IH)-a characteristic of obstructive sleep apnea associated with potential cardiovascular alterations due to early vascular permeability. Evidence for permeability in this context is limited, making our investigation significant. C57Bl/6 mice were exposed to normoxia or intermittent hypoxia for 14 days. Then SWIR imaging between 1,250 and 1,700 nm was performed on the saphenous artery and vein and on the surrounding tissue after intravenous injection of labeled dextrans of two different sizes (10 or 70 kDa). Postprocessing and segmentation of the SWIR images were conducted using deep learning treatment. We monitored high-resolution signals, distinguishing arteries, veins, and surrounding tissues. In the saphenous artery and vein, after 70-kD dextran injection, tissue/vessel ratio was higher after intermittent hypoxia (IH) than normoxia (N) over 500 seconds (P < 0.05). However, the ratio was similar in N and IH after 10-kD dextran injection. The SWIR imaging technique allows noninvasive, real-time monitoring of dextran extravasation in vivo. Dextran 70 extravasation is increased after exposure to IH, suggesting an increased vessel permeability in this mice model of obstructive sleep apnea.NEW & NOTEWORTHY We demonstrate that SWIR imaging technique is a useful tool to monitor real-time dextran extravasation from vessels in vivo, with a high resolution. We report for the first time an increased real-time dextran (70 kD) extravasation in mice exposed to intermittent hypoxia for 14 days compared with normoxic controls.


Assuntos
Dextranos , Apneia Obstrutiva do Sono , Animais , Camundongos , Hipóxia , Artérias , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339099

RESUMO

A cell's ability to secrete extracellular vesicles (EVs) for communication is present in all three domains of life. Notably, Gram-negative bacteria produce a specific type of EVs called outer membrane vesicles (OMVs). We previously observed the presence of OMVs in human blood, which could represent a means of communication from the microbiota to the host. Here, in order to investigate the possible translocation of OMVs from the intestine to other organs, the mouse was used as an animal model after OMVs administration. To achieve this, we first optimized the signal of OMVs containing the fluorescent protein miRFP713 associated with the outer membrane anchoring peptide OmpA by adding biliverdin, a fluorescence cofactor, to the cultures. The miRFP713-expressing OMVs produced in E. coli REL606 strain were then characterized according to their diameter and protein composition. Native- and miRFP713-expressing OMVs were found to produce homogenous populations of vesicles. Finally, in vivo and ex vivo fluorescence imaging was used to monitor the distribution of miRFP713-OMVs in mice in various organs whether by intravenous injection or oral gavage. The relative stability of the fluorescence signals up to 3 days post-injection/gavage paves the way to future studies investigating the OMV-based communication established between the different microbiotas and their host.


Assuntos
Escherichia coli , Vesículas Extracelulares , Animais , Camundongos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Intestinos , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
3.
BMC Biol ; 19(1): 173, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433435

RESUMO

BACKGROUND: Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. RESULTS: By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. CONCLUSIONS: We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias Pulmonares , Animais , Células Endoteliais , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases , Precursores de RNA , Fatores de Processamento de Serina-Arginina/genética , Peixe-Zebra/genética
4.
Small ; 17(7): e2007177, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502119

RESUMO

Probing the dynamics and quantifying the activities of intracellular protein kinases that coordinate cell growth and division and constitute biomarkers and pharmacological targets in hyperproliferative and pathological disorders remain a challenging task. Here engineering and characterization of a nanobiosensor of the mitotic kinase CDK1, through multifunctionalization of carbon nanotubes with a CDK1-specific fluorescent peptide reporter, are described. This original reporter of CDK1 activity combines the sensitivity of a fluorescent biosensor with the unique physico-chemical and biological properties of nanotubes for multifunctionalization and efficient intracellular penetration. The functional versatility of this nanobiosensor enables implementation to quantify CDK1 activity in a sensitive and dose-dependent fashion in complex biological environments in vitro, to monitor endogenous kinase in living cells and directly within tumor xenografts in mice by fluorescence imaging, thanks to a ratiometric quantification strategy accounting for response relative to concentration in space and in time.


Assuntos
Proteína Quinase CDC2 , Nanotubos de Carbono , Neoplasias Experimentais/enzimologia , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Fosforilação
5.
Blood ; 127(24): 3040-53, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27060168

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients. Targeted deep sequencing in 36 BPDCN cases, including 10 with NR3C1 deletion, did not reveal NR3C1 point mutations or indels. Haploinsufficiency for NR3C1 defined a subset of BPDCN with lowered GCR expression and extremely poor overall survival (P = .0006). Consistent with a role for GCR in tumor suppression, functional analyses coupled with gene expression profiling identified corticoresistance and loss-of-EZH2 function as major downstream consequences of NR3C1 deletion in BPDCN. Subsequently, more detailed analyses of the t(3;5)(q21;q31) revealed fusion of NR3C1 to a long noncoding RNA (lncRNA) gene (lincRNA-3q) that encodes a novel, nuclear, noncoding RNA involved in the regulation of leukemia stem cell programs and G1/S transition, via E2F. Overexpression of lincRNA-3q was a consistent feature of malignant cells and could be abrogated by bromodomain and extraterminal domain (BET) protein inhibition. Taken together, this work points to NR3C1 as a haploinsufficient tumor suppressor in a subset of BPDCN and identifies BET inhibition, acting at least partially via lncRNA blockade, as a novel treatment option in BPDCN.


Assuntos
Células Dendríticas/patologia , Haploinsuficiência , Leucemia/genética , Receptores de Glucocorticoides/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Células Dendríticas/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/patologia , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Longo não Codificante/genética , Receptores de Glucocorticoides/química , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Adulto Jovem
6.
J Pathol ; 242(1): 73-89, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28207159

RESUMO

Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Transativadores/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Ósseas/metabolismo , Remodelação Óssea/genética , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , RNA Mensageiro/genética , RNA Neoplásico/genética , Transdução de Sinais/genética , Transativadores/biossíntese , Células Tumorais Cultivadas
7.
Nanomedicine ; 12(4): 921-932, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26724540

RESUMO

New approaches that are more efficient and able to specifically reach lung tumors are needed. We developed new hyaluronan-based nanoparticles targeting CD44 receptors of two different sizes and compared their lung cancer cells targeting efficacy in vitro and in vivo. The nanoparticles' cellular uptake was dose-dependent, and specific to hyaluronan receptors, particularly CD44. The binding and internalization differed according to nanoparticle size. In vivo biodistribution studies in two orthotopic lung tumor models showed that intrapulmonary nebulized nanoparticles accumulated in lungs, but not in the tumor nodules. In contrast, despite a significant liver capture, intravenous injection led to a better accumulation of the nanoparticles in the lung tumors compared with the surrounding healthy lung tissues. We demonstrated that the hyaluronan-based nanoparticles size plays significant role in cellular uptake and biodistribution. Small nanoparticles showed active targeting of CD44-overexpressing tumors, suggesting that they could be used as drug-delivery system. FROM THE CLINICAL EDITOR: Combating cancers remains an important goal in clinical medicine. In this study, the authors investigated the ability of two hyaluronan-based nanoparticles targeting CD44 receptors to home in on lung cancer cells in an in-vivo orthotropic model. The preferential uptake of smaller sized nanoparticles via intravenous route has further enhanced the existing knowledge of future drug designs.


Assuntos
Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/genética , Ácido Hialurônico/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas/química , Tamanho da Partícula , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Distribuição Tecidual/efeitos dos fármacos
8.
Small ; 11(2): 215-21, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25201285

RESUMO

Lung cancer is the most common and most fatal cancer worldwide. Thus, improving early diagnosis and therapy is necessary. Previously, gadolinium-based ultra-small rigid platforms (USRPs) were developed to serve as multimodal imaging probes and as radiosensitizing agents. In addition, it was demonstrated that USRPs can be detected in the lungs using ultrashort echo-time magnetic resonance imaging (UTE-MRI) and fluorescence imaging after intrapulmonary administration in healthy animals. The goal of the present study is to evaluate their theranostic properties in mice with bioluminescent orthotopic lung cancer, after intrapulmonary nebulization or conventional intravenous administration. It is found that lung tumors can be detected non-invasively using fluorescence tomography or UTE-MRI after nebulization of USRPs, and this is confirmed by histological analysis of the lung sections. The deposition of USRPs around the tumor nodules is sufficient to generate a radiosensitizing effect when the mice are subjected to a single dose of 10 Gy conventional radiation one day after inhalation (mean survival time of 112 days versus 77 days for irradiated mice without USRPs treatment). No apparent systemic toxicity or induction of inflammation is observed. These results demonstrate the theranostic properties of USRPs for the multimodal detection of lung tumors and improved radiotherapy after nebulization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Gadolínio , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas , Nebulizadores e Vaporizadores , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos
9.
J Nucl Cardiol ; 21(5): 984-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24875578

RESUMO

BACKGROUND: The great clinical potential of myocardial ß-AR imaging has been shown by recent studies evaluating the ß-AR-specific, non-selective agent [(11)C]-CGP12177 in the setting of idiopathic-dilated cardiomyopathy, and myocardial infarction. However, the short half-life of (11)C hampers the potential of [(11)C]-CGP12177 for routine clinical use. AMI9 is an analog of the ß-adrenoceptor ligand practolol that can readily be labeled using radioactive isotopes of iodine. The present study was aimed at characterizing the in vitro, ex vivo, and in vivo ß-AR binding properties of [(125)I]-AMI9. METHODS AND RESULTS: Newborn rat cardiomyocytes were used for saturation and kinetic binding assays as well as for displacement and competition experiments. Isolated perfused rat hearts were used to evaluate the pharmacological activity of AMI9. The in vivo kinetics of [(125)I]-AMI9 were studied using biodistribution experiments in mice. [1(25)I]-AMI9 displayed high specific affinity for ß-AR with no ß-AR subtype selectivity (K D, 5.6 ± 0.3 nM; B max, 231 ± 7 fmol·(mg protein)(-1)). AMI9 potently inhibited the inotropic effects of isoproterenol. The early in vivo cardiac and lung activities of [(125)I]-AMI9 compared favorably with those of the clinically validated tracer CGP12177. CONCLUSION: Iodine-labeled AMI9 is a promising agent for the molecular imaging of myocardial ß-AR density.


Assuntos
Imagem Molecular/métodos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Practolol/análogos & derivados , Practolol/farmacocinética , Receptores Adrenérgicos beta/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Animais , Animais Recém-Nascidos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Coração/diagnóstico por imagem , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Marcação por Isótopo/métodos , Taxa de Depuração Metabólica , Camundongos , Miócitos Cardíacos/diagnóstico por imagem , Especificidade de Órgãos , Cintilografia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
11.
Nanomedicine ; 9(3): 375-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22960195

RESUMO

Lipid nanocapsules (LNCs) and lipid nanoemulsions (LNEs) are biomimetic synthetic nanocarriers. Their in vitro and in vivo performance was evaluated as a function of their size (25, 50 and 100 nm) and the surface PEG chain length. Analysis methods included complement activation test, particle uptake in macrophage and HEK293(ß3) cells and biodistribution studies with tumor-grafted mice by fluorescence imaging. A particular attention was paid to keep the concentration of each nanocarrier and to the amount of fluorescent dye in comparable conditions between the in vitro and in vivo studies. Under these conditions, no significant differences were found among the three tested particle sizes and the two nanocarrier types. Longer PEG chains on the LNE surface provided better stealth properties, whereas PEG modification on the LNC formulations inhibited the production of stable nanocarriers. Passive accumulation of LNCs and LNEs in different tumor types depended on the degree of tumor vascularization. FROM THE CLINICAL EDITOR: This study of lipid nanocapsules and lipid nanoemulsions compares their vitro and in vivo performance as a function of size and surface PEG chain length, demonstrating no significant difference among the tested particle sizes. Longer PEG chains on the LNE surface provided better stealth properties, whereas PEG modification on the LNC formulations inhibited the production of stable nanocarriers.


Assuntos
Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Emulsões/farmacocinética , Lipídeos/farmacocinética , Nanocápsulas/química , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Materiais Revestidos Biocompatíveis/farmacologia , Ativação do Complemento/efeitos dos fármacos , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Lipídeos/farmacologia , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Propriedades de Superfície , Distribuição Tecidual/efeitos dos fármacos
12.
Adv Healthc Mater ; 12(30): e2301692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655491

RESUMO

The reconstruction of critical-size bone defects in long bones remains a challenge for clinicians. A new osteoinductive medical device is developed here for long bone repair by combining a 3D-printed architectured cylindrical scaffold made of clinical-grade polylactic acid (PLA) with a polyelectrolyte film coating delivering the osteogenic bone morphogenetic protein 2 (BMP-2). This film-coated scaffold is used to repair a sheep metatarsal 25-mm long critical-size bone defect. In vitro and in vivo biocompatibility of the film-coated PLA material is proved according to ISO standards. Scaffold geometry is found to influence BMP-2 incorporation. Bone regeneration is followed using X-ray scans, µCT scans, and histology. It is shown that scaffold internal geometry, notably pore shape, influenced bone regeneration, which is homogenous longitudinally. Scaffolds with cubic pores of ≈870 µm and a low BMP-2 dose of ≈120 µg cm-3 induce the best bone regeneration without any adverse effects. The visual score given by clinicians during animal follow-up is found to be an easy way to predict bone regeneration. This work opens perspectives for a clinical application in personalized bone regeneration.


Assuntos
Ossos do Metatarso , Alicerces Teciduais , Animais , Ovinos , Regeneração Óssea , Osteogênese , Poliésteres/farmacologia , Polímeros/farmacologia , Impressão Tridimensional , Engenharia Tecidual
13.
Cancer Sci ; 103(6): 1105-10, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22448775

RESUMO

Integrin α(v)ß(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)ß(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches.


Assuntos
Radioisótopos de Índio/farmacocinética , Integrina alfaVbeta3/metabolismo , Rim/metabolismo , Compostos Organometálicos/farmacocinética , Peptídeos Cíclicos/farmacocinética , Poligelina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes , Células HEK293 , Humanos , Índio/metabolismo , Radioisótopos de Índio/metabolismo , Taxa de Depuração Metabólica , Camundongos , Camundongos Nus , Imagem Multimodal , Compostos Organometálicos/metabolismo , Peptídeos Cíclicos/metabolismo , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X
14.
Methods Mol Biol ; 2451: 175-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505018

RESUMO

Advanced ovarian cancer is the most serious among gynecological malignancies and is associated with 35% five-year overall survival. Surgery is the first therapeutic indication, and the absence of remaining macroscopic lesions is the most important prognostic factor. However, tumor dissemination over the whole abdominal cavity largely contributes to the difficulty of complete surgical resection. Consequently, any therapeutic approach that may complete surgical resection should improve patient survival. Considering that some sites are not suitable for surgery because of their close location to vital organs, intraoperative photodynamic therapy (ioPDT) appears to be a complementary therapeutic approach to surgery to obtain the lowest residual disease.Relevant in vivo cancer models that closely resemble human ovarian cancer are essential for preclinical research of alternative antitumor therapeutic strategies. Thus, we propose a comprehensive protocol to set up an orthotopic ovarian xenograft in mice leading to peritoneal carcinomatosis that could be harnessed for antitumor therapeutic application and evaluation.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Fotoquimioterapia , Animais , Carcinoma Epitelial do Ovário , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia
15.
Biomedicines ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625796

RESUMO

Complete surgical removal of lesions improves survival of peritoneal carcinomatosis and can be enhanced by intraoperative near-infrared fluorescence imaging. Indocyanine green (ICG) is the only near-infrared fluorescent dye approved for clinical use, but it lacks specificity for tumor cells, highlighting the need for tumor-selective targeting agents. We compared the tumor-specific near-infrared fluorescent probes Bevacizumab-IRDye 800CW and Angiostamp800, which target tumor angiogenesis and cancer cells, to ICG for fluorescence-guided surgery in peritoneal carcinomatosis of ovarian origin. The probes were administered to mice with orthotopic peritoneal carcinomatosis prior to conventional and fluorescence-guided surgery. The influence of neoadjuvant chemotherapy was also assessed. Conventional surgery removed 88.0 ± 1.2% of the total tumor load in mice. Fluorescence-guided surgery allowed the resection of additional nodules, enhancing the total tumor burden resection by 9.8 ± 0.7%, 8.5 ± 0.8%, and 3.9 ± 1.2% with Angiostamp800, Bevacizumab-IRDye 800CW and ICG, respectively. Interestingly, among the resected nodules, 15% were false-positive with ICG, compared to only 1.4% with Angiostamp800 and 3.5% with Bevacizumab-IRDye 800CW. Furthermore, conventional surgery removed only 69.0 ± 3.9% of the total tumor burden after neoadjuvant chemotherapy. Fluorescence-guided surgery with Angiostamp800 and Bevacizumab-IRDye 800CW increased the total tumor burden resection to 88.7 ± 4.3%, whereas ICG did not improve surgery at all. Bevacizumab-IRDye 800CW and Angiostamp800 better detect ovarian tumors and metastases than the clinically used fluorescent tracer ICG, and can help surgeons completely remove tumors, especially after surgery neoadjuvant chemotherapy.

16.
Sci Rep ; 12(1): 12916, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902610

RESUMO

The association between obstructive sleep apnea (OSA) and cancer is still debated and data are scarce regarding the link between OSA and breast cancer progression. Since conclusive epidemiological studies require large sample sizes and sufficient duration of exposure before incident cancer occurrence, basic science studies represent the most promising approach to appropriately address the topic. Here we assessed the impact of intermittent hypoxia (IH), the major hallmark of OSA, on the development of breast cancer and explored the specific involvement of the endothelin signaling pathway. Original in vitro and in vivo models were used where 3D-spheroids or cultures of murine 4T1 breast cancer cells were submitted to IH cycles, and nude NMRI mice, orthotopically implanted with 4T1 cells, were submitted to chronic IH exposure before and after implantation. The role of the endothelin-1 in promoting cancer cell development was investigated using the dual endothelin receptor antagonist, macitentan. In vitro exposure to IH significantly increased 4T1 cell proliferation and migration. Meta-analysis of 4 independent in vivo experiments showed that chronic IH exposure promoted tumor growth, assessed by caliper measurement (overall standardized mean difference: 1.00 [0.45-1.55], p < 0.001), bioluminescence imaging (1.65 [0.59-2.71]; p < 0.01) and tumor weight (0.86 [0.31-1.41], p < 0.01), and enhanced metastatic pulmonary expansion (0.77 [0.12-1.42]; p = 0.01). Both in vitro and in vivo tumor-promoting effects of IH were reversed by macitentan. Overall, these findings demonstrate that chronic intermittent hypoxia exposure promotes breast cancer growth and malignancy and that dual endothelin receptor blockade prevents intermittent hypoxia-induced tumor development.


Assuntos
Neoplasias , Apneia Obstrutiva do Sono , Animais , Endotelina-1/metabolismo , Hipóxia/metabolismo , Camundongos , Receptor de Endotelina A
17.
Biomater Sci ; 10(21): 6315-6325, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36149672

RESUMO

Following intravenous administration, the interaction of fluorescent exogenous molecules with circulating endogenous transporters can influence their photophysical properties as well as their fate and distribution, and possibly their recognition by different cell types. This type of interaction can be used to optimize the drug delivery but also the imaging properties of a compound of interest. In this study, we investigated the behavior of SWIR-WAZABY-01 fluorophore, a water-soluble aza-BODIPY dye emitting in the NIR-II region, both in vitro and in vivo. While the fluorescence emission of SWIR-WAZABY-01 was weak in aqueous solutions, it was intensely magnified in plasma (∼ ×30). Further analyses using lipoprotein gel electrophoresis and ultracentrifugation revealed interactions between SWIR-WAZABY-01 and plasma lipoproteins in vitro and ex vivo, in particular with LDL. The tumor uptake mechanism of SWIR-WAZABY-01 was investigated based on the presence of low-density lipoprotein (LDL) receptors and passive tumor uptake. Overall, we found that SWIR-WAZABY-01 interacts with lipoproteins enhancing their NIR-II fluorescence emission, and driving the tumor accumulation with regards to the expression of lipoprotein receptors (LDLR, SR-BI). Moreover, SWIR-WAZABY-01, by exploiting endogenous lipoproteins, arises as a new, potent and relevant tool to efficiently label LDL involved in pathologies.


Assuntos
Neoplasias , Receptores de Lipoproteínas , Humanos , Fluorescência , Corantes Fluorescentes , Lipoproteínas LDL/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
18.
Mol Ther ; 18(3): 528-35, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19826406

RESUMO

Molecular resistance mechanisms affecting the efficiency of receptor tyrosine kinase inhibitors such as gefitinib in non-small-cell lung cancer (NSCLC) cells are not fully understood. Amphiregulin (Areg) overexpression has been proposed to predict NSCLC resistance to gefitinib and we have established that Areg-overexpressing H358 NSCLC cells resist apoptosis. Here, we demonstrate that Areg prevents gefitinib-induced apoptosis in NSCLC cells. We show that H358 cells are resistant to gefitinib in contrast to H322 cells, which do not overexpress Areg. Inhibition of Areg expression by small-interfering RNAs (siRNAs) restores gefitinib sensitivity in H358 cells, whereas addition of recombinant Areg confers resistance in H322 cells. Areg knockdown overcomes resistance to gefitinib and induced apoptosis in NSCLC H358 cells in vitro and in vivo. Under gefitinib treatment, Areg decreases the expression of the proapoptotic protein BAX, inhibits its conformational change and its mitochondrial translocation. Thus, in the presence of Areg, gefitinib-mediated apoptosis is reduced because BAX is sequestered in the cytoplasm. This suggests that treatments using epidermal growth factor receptor (EGFR) inhibitors may be poorly efficient in patients with elevated levels of Areg. These findings indicate the need for inhibition of Areg to enhance the efficiency of the EGFR inhibitors in patients suffering NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína X Associada a bcl-2/metabolismo , Anfirregulina , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Família de Proteínas EGF , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Camundongos , Mitocôndrias/metabolismo , Quinazolinas/farmacologia
19.
Mol Ther ; 18(3): 536-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19826407

RESUMO

Multiple molecular resistance mechanisms reduce the efficiency of receptor tyrosine kinase inhibitors such as gefitinib in non-small cell lung cancer (NSCLC). We previously demonstrated that amphiregulin (Areg) inhibits gefitinib-induced apoptosis in NSCLC cells by inactivating the proapoptotic protein BAX. In this part of the investigation, we studied the molecular mechanisms leading to BAX inactivation. We show that Areg prevents gefitinib-mediated acetylation of Ku70. This augments the BAX-Ku70 interaction and therefore prevents BAX-mediated apoptosis. Accordingly, Areg or Ku70 knock down restore BAX activation and apoptosis in gefitinib-treated H358 cells in vitro. In addition, overexpression of the histone acetyltransferase (HAT) CREB-binding protein (CBP) or treatments with histone deacetylase (HDAC) inhibitors sensitize H358 cells to gefitinib. Moreover, a treatment with vorinostat, a HDAC inhibitor strongly sensitized tumors to gefitinib in vivo. These findings suggest new prospects in combining both HDAC and epidermal growth factor receptor inhibitors for the treatment of NSCLC.


Assuntos
Antígenos Nucleares/biossíntese , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Resistencia a Medicamentos Antineoplásicos , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Quinazolinas/farmacologia , Anfirregulina , Animais , Antineoplásicos/farmacologia , Família de Proteínas EGF , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Histona Acetiltransferases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Autoantígeno Ku , Camundongos , Frações Subcelulares , Vorinostat , Proteína X Associada a bcl-2/metabolismo
20.
Mol Ther Methods Clin Dev ; 20: 181-190, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33473357

RESUMO

Intensive systemic chemotherapy is the gold standard of acute myeloid leukemia (AML) treatment and is associated with considerable off-target toxicities. Safer and targeted delivery systems are thus urgently needed. In this study, we evaluated a virus-like particle derived from the human type 3 adenovirus, called the adenoviral dodecahedron (Dd) to target AML cells. The vectorization of leukemic cells was proved very effective at nanomolar concentrations in a time- and dose-dependent manner, without vector toxicity. The internalization involved clathrin-mediated energy-dependent endocytosis and strongly correlated with the expression of αVß3 integrin. The treatment of healthy donor peripheral blood mononuclear cells showed a preferential targeting of monocytes compared to lymphocytes and granulocytes. Similarly, monocytes but also AML blasts were the best-vectorized populations in patients while acute lymphoid leukemia blasts were less efficiently targeted. Importantly, AML leukemic stem cells (LSCs) could be addressed. Finally, Dd reached peripheral monocytes and bone marrow hematopoietic stem and progenitor cells following intravenous injection in mice, without excessive spreading in other organs. These findings reveal Dd as a promising myeloid vector especially for therapeutic purposes in AML blasts, LSCs, and progenitor cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa