Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 76(4): 531-545.e5, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31706703

RESUMO

The glucocorticoid receptor (GR) is a potent metabolic regulator and a major drug target. While GR is known to play integral roles in circadian biology, its rhythmic genomic actions have never been characterized. Here we mapped GR's chromatin occupancy in mouse livers throughout the day and night cycle. We show how GR partitions metabolic processes by time-dependent target gene regulation and controls circulating glucose and triglycerides differentially during feeding and fasting. Highlighting the dominant role GR plays in synchronizing circadian amplitudes, we find that the majority of oscillating genes are bound by and depend on GR. This rhythmic pattern is altered by high-fat diet in a ligand-independent manner. We find that the remodeling of oscillatory gene expression and postprandial GR binding results from a concomitant increase of STAT5 co-occupancy in obese mice. Altogether, our findings highlight GR's fundamental role in the rhythmic orchestration of hepatic metabolism.


Assuntos
Cromatina/metabolismo , Relógios Circadianos , Ritmo Circadiano , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Metabolismo Energético , Fígado/metabolismo , Obesidade/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Glicemia/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Modelos Animais de Doenças , Metabolismo Energético/genética , Jejum/metabolismo , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Gluconeogênese , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Período Pós-Prandial , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Via Secretória , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/sangue
2.
Genes Dev ; 32(5-6): 347-358, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572261

RESUMO

The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior.


Assuntos
Cromatina/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Transcrição Gênica/genética , Animais , Proteínas CLOCK/genética , Cromatina/genética , Criptocromos/metabolismo , Elementos Facilitadores Genéticos/genética , Rim/fisiologia , Fígado/fisiologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Deleção de Sequência/genética
3.
Proc Natl Acad Sci U S A ; 119(10): e2200083119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238641

RESUMO

SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/etiologia , Fatores de Transcrição ARNTL/genética , Animais , Dieta Hiperlipídica , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Leptina/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética
4.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34014371

RESUMO

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Assuntos
Adipócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/fisiologia , Glucocorticoides/farmacologia , Obesidade/genética , Fatores de Transcrição/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Adulto Jovem
5.
Genome Res ; 28(2): 182-191, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29254942

RESUMO

Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição/genética , Animais , Cromatina/genética , Regulação da Expressão Gênica/genética , Rim/metabolismo , Fígado/metabolismo , Camundongos , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas
6.
Proc Natl Acad Sci U S A ; 111(1): 167-72, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344304

RESUMO

Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.


Assuntos
Relógios Circadianos , Regulação da Expressão Gênica , Fígado/metabolismo , Plasma/metabolismo , Proteoma , Albuminas/metabolismo , Animais , Ritmo Circadiano , Criptocromos/genética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , alfa 1-Antitripsina/metabolismo
7.
PLoS Biol ; 11(1): e1001455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300384

RESUMO

Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Fatores de Iniciação em Eucariotos/biossíntese , RNA Mensageiro/biossíntese , Ribossomos/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Criptocromos/genética , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/biossíntese , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico/biossíntese , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
J Am Soc Nephrol ; 25(7): 1430-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652800

RESUMO

The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Relógios Circadianos/fisiologia , Homeostase/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Fatores de Transcrição ARNTL/fisiologia , Animais , Masculino , Camundongos , Renina/fisiologia
9.
Proc Natl Acad Sci U S A ; 108(12): 4794-9, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383142

RESUMO

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , PPAR alfa/biossíntese , Fatores de Transcrição/metabolismo , Animais , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Zíper de Leucina , Camundongos , Camundongos Knockout , PPAR alfa/genética , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Xenobióticos/farmacocinética , Xenobióticos/farmacologia
10.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895384

RESUMO

Circadian disruption enhances cancer risk, and many tumors exhibit disordered circadian gene expression. We show rhythmic gene expression is unexpectedly robust in clear cell renal cell carcinoma (ccRCC). Furthermore, the clock gene BMAL1 is higher in ccRCC than in healthy kidneys, unlike in other tumor types. BMAL1 is closely related to ARNT, and we show that BMAL1-HIF2α regulates a subset of HIF2α target genes in ccRCC cells. Depletion of BMAL1 reprograms HIF2α chromatin association and target gene expression and reduces ccRCC growth in culture and in xenografts. Analysis of pre-existing data reveals higher BMAL1 in patient-derived xenografts that are sensitive to growth suppression by a HIF2α antagonist (PT2399). We show that BMAL1-HIF2α is more sensitive than ARNT-HIF2α to suppression by PT2399, and increasing BMAL1 sensitizes 786O cells to growth inhibition by PT2399. Together, these findings indicate that an alternate HIF2α heterodimer containing the circadian partner BMAL1 contributes to HIF2α activity, growth, and sensitivity to HIF2α antagonist drugs in ccRCC cells.

11.
Acta Physiol (Oxf) ; 237(3): e13936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645134

RESUMO

The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Animais , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Obesidade , Relógios Circadianos/fisiologia , Ingestão de Alimentos/fisiologia , Mamíferos
12.
Mol Metab ; 60: 101497, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413480

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. METHODS: RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. RESULTS: We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. CONCLUSIONS: Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health.


Assuntos
Tecido Adiposo Marrom , Proteína 4 Semelhante a Angiopoietina/metabolismo , Lipase Lipoproteica , Tecido Adiposo Marrom/metabolismo , Angiopoietinas , Animais , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Triglicerídeos/metabolismo
13.
Cell Rep ; 39(10): 110910, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675775

RESUMO

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Assuntos
Lipólise , PPAR alfa , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hepatócitos/metabolismo , Corpos Cetônicos/metabolismo , Lipólise/fisiologia , PPAR alfa/metabolismo
14.
Methods Mol Biol ; 1966: 39-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041738

RESUMO

Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-seq) is a powerful tool to map context-dependent genome-wide binding of nuclear hormone receptors and their coregulators. This information can provide important mechanistic insight into where, when and how DNA-protein interactions are linked to target gene regulation. Here we describe a simple, yet reliable ChIP-seq method, including nuclear isolation from frozen tissue samples, cross-linking DNA-protein complexes, chromatin shearing, immunoprecipitation, and purification of ChIP DNA. We also include a standard ChIP-seq data analysis pipeline to elaborate and analyze raw single-end or paired-end sequencing data, including quality control steps, peak calling, annotation, and motif enrichment.


Assuntos
Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , DNA/metabolismo , Humanos , Análise de Sequência de DNA/métodos
15.
Sci Rep ; 6: 24631, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097688

RESUMO

Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.


Assuntos
Proteínas de Transporte/metabolismo , Ritmo Circadiano , Metabolismo dos Lipídeos , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Relógios Circadianos , Ritmo Circadiano/genética , Análise por Conglomerados , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa