Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(2): 220-236, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067925

RESUMO

Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.


Assuntos
Ecossistema , Pesqueiros , Animais , Mudança Climática , Peixes , Inquéritos e Questionários
2.
Acta Biotheor ; 64(4): 519-536, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27770316

RESUMO

We present a mathematical model of two competing marine species that are harvested. We consider three models according to different levels of complexity, without and with species refuge and density-independent and density-dependent species movement between fishing area and refuge. We particularly study the effects of the fishing pressure on the outcome of the competition. We focus on conditions that allow an inferior competitor to invade as a result of fishing pressure. The model is discussed in relationship to the case of the thiof and the octopus along the Atlantic West African coast. At the origin, the thiof was abundant and the octopus scarce in that region. Since, the fishing pressure has strongly increased in some fishing areas leading to the depletion of the thiof and the invasion of its competitor, the octopus.


Assuntos
Comportamento Competitivo , Pesqueiros , Peixes/classificação , Peixes/fisiologia , Modelos Teóricos , Octopodiformes/fisiologia , Animais , Dinâmica Populacional , Senegal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa