Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Theor Appl Genet ; 134(7): 2113-2127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768282

RESUMO

KEY MESSAGE: Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments. Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.


Assuntos
Resposta ao Choque Térmico , Locos de Características Quantitativas , Triticum/genética , Austrália , Grão Comestível/genética , Grão Comestível/fisiologia , Interação Gene-Ambiente , Estudos de Associação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
2.
Theor Appl Genet ; 134(10): 3339-3350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254178

RESUMO

KEY MESSAGE: Genomic selection enabled accurate prediction for the concentration of 13 nutritional element traits in wheat. Wheat biofortification is one of the most sustainable strategies to alleviate mineral deficiency in human diets. Here, we investigated the potential of genomic selection using BayesR and Bayesian ridge regression (BRR) models to predict grain yield (YLD) and the concentration of 13 nutritional elements in grains (B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P and Zn) using a population of 1470 spring wheat lines. The lines were grown in replicated field trials with two times of sowing (TOS) at 3 locations (Narrabri-NSW, all lines; Merredin-WA and Horsham-VIC, 200 core lines). Narrow-sense heritability across environments (locations/TOS) ranged from 0.09 to 0.45. Co, K, Na and Ca showed low to negative genetic correlations with other traits including YLD, while the remaining traits were negatively correlated with YLD. When all environments were included in the reference population, medium to high prediction accuracy was observed for the different traits across environments. BayesR had higher average prediction accuracy for mineral concentrations (r = 0.55) compared to BRR (r = 0.48) across all traits and environments but both methods had comparable accuracies for YLD. We also investigated the utility of one or two locations (reference locations) to predict the remaining location(s), as well as the ability of one TOS to predict the other. Under these scenarios, BayesR and BRR showed comparable performance but with lower prediction accuracy compared to the scenario of predicting reference environments for new lines. Our study demonstrates the potential of genomic selection for enriching wheat grain with nutritional elements in biofortification breeding.


Assuntos
Biofortificação/métodos , Cromossomos de Plantas/genética , Genoma de Planta , Melhoramento Vegetal , Seleção Genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas
3.
Plant J ; 100(4): 801-812, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355965

RESUMO

Sequence elimination is one of the main mechanisms that increases the divergence among homoeologous chromosomes after allopolyploidization to enhance the stability of recently established lineages, but it can cause a loss of some economically important genes. Synthetic hexaploid wheat (SHW) is an important source of genetic variation to the natural hexaploid wheat (NHW) genepool that has low genetic diversity. Here, we investigated the change between SHW and NHW genomes by utilizing a large germplasm set of primary synthetics and synthetic derivatives. Reproducible segment elimination (RSE) was declared if a large chromosomal chunk (>5 cM) produced no aligned reads in more than five SHWs. RSE in five genomic regions was the major source of variation between SHW and NHW. One RSE eliminated almost the complete short arm of chromosome 1B, which contains major genes for flour quality, disease resistance and different enzymes. The occurrence of RSE was highly dependent on the choice of diploid and tetraploid parental lines, their ancestral subpopulation and admixture, e.g. SHWs derived from Triticum dicoccon or from one of two Aegilops tauschii subpopulations were almost free of RSE, while highly admixed parents had higher RSE rates. The rate of RSE in synthetic derivatives was almost double that in primary synthetics. Genome-wide association analysis detected four loci with minor effects on the occurrence of RSE, indicating that both parental lines and genetic factors were affecting the occurrence of RSE. Therefore, pre-pre-breeding strategies should be applied before introducing SHW into pre-breeding programs to ensure genomic stability and avoid undesirable gene loss.


Assuntos
Genoma de Planta , Triticum/genética , Pão , Cromossomos de Plantas , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Filogenia , Poliploidia
4.
Theor Appl Genet ; 133(9): 2695-2712, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504212

RESUMO

We utilized 2300 wheat accessions including worldwide landraces, cultivars and primary synthetic-derived germplasm with three Australian cultivars: Annuello, Yitpi and Correll, to investigate field-based resistance to leaf (Lr) rust, stem (Sr) rust and stripe (Yr) rust diseases across a range of Australian wheat agri-production zones. Generally, the resistance in the modern Australian cultivars, synthetic derivatives, South and North American materials outperformed other geographical subpopulations. Different environments for each trait showed significant correlations, with average r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr, respectively. Single-trait genome-wide association studies (GWAS) revealed several environment-specific and multi-environment quantitative trait loci (QTL). Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B within a 4.4-cM region. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exist within the 3B cluster including the durable rust resistance gene Yr30. An Sr/Lr QTL on chromosome 3D was found mainly in the synthetic-derived germplasm from Annuello background which is known to carry the Agropyron elongatum 3D translocation involving the Sr24/Lr24 resistance locus. Interestingly, estimating the SNP effects using a BayesR method showed that the correlation among the highest 1% of QTL effects across environments (excluding GWAS QTL) had significant correlations, with average r values of 0.26, 0.16 and 0.55 for Lr, Sr and Yr, respectively. These results indicate the importance of small effect QTL in achieving durable rust resistance which can be captured using genomic selection.


Assuntos
Resistência à Doença/genética , Meio Ambiente , Genética Populacional , Doenças das Plantas/genética , Triticum/genética , Austrália , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cruzamentos Genéticos , Estudos de Associação Genética , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
5.
Sci Rep ; 14(1): 10215, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702403

RESUMO

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Assuntos
Resistência a Herbicidas , Herbicidas , Lens (Planta) , Polimorfismo de Nucleotídeo Único , Lens (Planta)/genética , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Herbicidas/farmacologia , Herbicidas/toxicidade , Resistência a Herbicidas/genética , Estudo de Associação Genômica Ampla , Genes de Plantas , Locos de Características Quantitativas
6.
Methods Mol Biol ; 2481: 173-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641765

RESUMO

Growing genomic and phenotypic datasets require different groups around the world to collaborate and integrate these valuable resources to maximize their benefit and increase reference population sizes for genomic prediction and genome-wide association studies (GWAS). However, different studies use different genotyping techniques which requires a synchronizing step for the genotyped variants called "imputation" before combining them. Optimally, different GWAS datasets can be analysed within a meta-analysis, which recruits summary statistics instead of actual data. This chapter describes the general principles for genotypic imputation and meta-GWAS analysis with a description of study designs and command lines required for such analyses.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Genoma , Estudo de Associação Genômica Ampla/métodos , Genótipo , Técnicas de Genotipagem/métodos
7.
Evol Appl ; 12(8): 1610-1625, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31462918

RESUMO

Australia has one of the oldest modern wheat breeding programs worldwide although the crop was first introduced to the country in 1788. Breeders selected wheat with high adaptation to different Australian climates, while ensuring satisfactory yield and quality. This artificial selection left distinct genomic signatures that can be used to retrospectively understand breeding targets, and to detect economically important alleles. To study the effect of artificial selection on modern cultivars and cultivars released in different Australian states, we genotyped 482 Australian cultivars representing the history of wheat breeding in Australia since 1840. Computer simulation showed that 86 genomic regions were significantly affected by artificial selection. Characterization of 18 major genes known to affect wheat adaptation, yield, and quality revealed that many were affected by artificial selection and contained within regions under selection. Similarly, many reported QTL and genes for yield, quality, and adaptation were also contained in regions affected by artificial selection. These included TaCwi-A1, TaGw2-6A, Sus-2B, TaSus1-7A, TaSAP1-7A, Glu-A1, Glu-B1, Glu-B3, PinA, PinB, Ppo-D1, Psy-A1, Psy-A2, Rht-A1, Rht-B1, Ppd-D1, Vrn-A1, Vrn-B1, and Cre8. Interestingly, 17 regions affected by artificial selection were in moderate-to-high linkage disequilibrium with each other with an average r 2 value of 0.35 indicating strong simultaneous selection on specific alleles. These regions included Glu-B1, TaGw2-6A, Cre8, Ppd-D1, Rht-B1, Vrn-B1, TaSus1-7A, TaSAP1-7A, and Psy-A1 plus multiple QTL affecting wheat yield and yield components. These results highlighted the effects of the long-term artificial selection on Australian wheat germplasm and identified putative regions underlying important traits in wheat.

8.
Nat Genet ; 51(5): 885-895, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962619

RESUMO

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Assuntos
Triticum/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cromossomos de Plantas/genética , Domesticação , Variação Genética , Genoma de Planta , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Sintenia , Tetraploidia , Triticum/classificação , Triticum/metabolismo
9.
Front Genet ; 9: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467793

RESUMO

Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will facilitate the effective utilization of wheat wild relatives in breeding.

10.
Front Plant Sci ; 8: 2115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312381

RESUMO

Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with maintaining genetic diversity for long-term selection gains and to plan future breeding programs.

11.
Plant Sci ; 252: 222-229, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717458

RESUMO

Mining of new genetic resources is of paramount importance to combat the alarming spread of stripe rust disease and breakdown of major resistance genes in wheat. We conducted a genome wide association study on 352 un-utilized Afghan wheat landraces against stripe rust resistance in eight locations. High level of disease variation was observed among locations and a core-set of germplasm showed consistence performance. Linkage disequilibrium (LD) decayed rapidly (R2≈0.16 at 0cM) due to germplasm peerless diversity. The mixed linear model resulted in ten marker-trait associations (MTAs) across all environments representing five QTL. The extensively short LD blocks required us to repeat the analysis with less diverse subset of 220 landraces in which R2 decayed below 0.2 at 0.3cM. The subset GWAS resulted in 36 MTAs clustered in nine QTL. The subset analysis validated three QTL previously detected in the full list analysis. Overall, the study revealed that stripe rust epidemics in the geographical origin of this germplasm through time have permitted for selecting novel resistance loci.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/microbiologia
12.
Plant Genome ; 8(2): eplantgenome2014.09.0056, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228304

RESUMO

The recent development in high-throughput genotyping techniques requires new statistical methods to analyze large datasets. The current available linkage mapping software are time consuming and limited in terms of the maximum number of markers that can be mapped on a single linkage group. In this paper, we propose the Perl pipeline, SimpleMap. This tool can significantly improve the speed of currently available linkage mapping software with minimal impact on marker order and map length by limiting the consideration of duplicated and tightly linked molecular markers during linkage group development. SimpleMap works with the following three main steps: (i) generating a subset of markers for which each pair has a number of recombinants higher than a threshold determined by the user (the repulsion threshold), (ii) mapping this subset with any external mapping tool, and (iii) intersecting the remaining unmapped markers to the constructed map. The script was tested on 15 wheat (Triticum aestivum L.) linkage groups derived from two different crosses. In 13 genetic groups, the computational time was reduced from ∼8 h to ∼8 min, while it was impossible to map the remaining two linkage groups without applying SimpleMap first. SimpleMap is a very time-efficient tool, and considering a repulsion threshold equivalent to 1 cM results in a number of markers similar to map lengths that can be analyzed on a simple personal computer. SimpleMap can be downloaded from http://simplemap-aj.sourceforge.net/.

13.
BMC Res Notes ; 5: 556, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23035963

RESUMO

BACKGROUND: Microsatellites, or simple sequence repeats (SSRs), are DNA sequences that include tandem copies of specific sequences no longer than six bases. SSRs are ubiquitous in all genomes and highly mutable. PRESENTATION OF THE HYPOTHESIS: Results from previous studies suggest that flanking regions of SSR are exhibit high stability in a wide range of organisms. We hypothesized that the SSRs ability to discard weak DNA polymerases could be responsible for this unusual stability. . When the weak polymerases are being decayed over SSRs, the flanking sequences would have higher opportunity to be replicated by more stable DNA polymerases. We present evidence of the molecular basis of our hypothesis. TESTING THE HYPOTHESIS: The hypothesis could be tested by examining the activity of DNA polymerase during and after a number of PCRs. The PCR reactions should be run with the same SSR locus possessing differences in the SSR length. The hypothesis could also be tested by comparing the mutational rate of a transferred gene between two transformations. The first one has a naked T-DNA (transferred DNA), while the second one has the same T-DNA flanked with two SSRs. IMPLICATIONS OF THE HYPOTHESIS: In any transformation experiment, flanking the T-DNA fragment with SSR sequences would result in more stably transferred genes. This process would decrease the unpredictable risks that may occur because of the mutational pressure on this foreign segment.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Genes/genética , Repetições de Microssatélites/genética , Animais , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/química , Genoma/genética , Humanos , Modelos Genéticos , Mutação , Phytophthora/genética , Plantas/genética , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa