Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660921

RESUMO

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

2.
Proc Natl Acad Sci U S A ; 116(51): 25974-25981, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792171

RESUMO

Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for detoxification the ethanol metabolite acetaldehyde, is recognized as a promising therapeutic target to treat alcohol use disorders (AUDs). Disulfiram, a potent ALDH2 inhibitor, is an approved drug for the treatment of AUD but has clinical limitations due to its side effects. This study aims to elucidate the relative contribution of different organs in acetaldehyde clearance through ALDH2 by using global- (Aldh2-/-) and tissue-specific Aldh2-deficient mice, and to examine whether liver-specific ALDH2 inhibition can prevent alcohol-seeking behavior. Aldh2-/- mice showed markedly higher acetaldehyde concentrations than wild-type (WT) mice after acute ethanol gavage. Acetaldehyde levels in hepatocyte-specific Aldh2 knockout (Aldh2Hep-/-) mice were significantly higher than those in WT mice post gavage, but did not reach the levels observed in Aldh2-/- mice. Energy expenditure and motility were dramatically dampened in Aldh2-/- mice, but moderately decreased in Aldh2Hep-/- mice compared to controls. In the 2-bottle paradigm and the drinking-in-the-dark model, Aldh2-/- mice drank negligible volumes from ethanol-containing bottles, whereas Aldh2Hep-/- mice showed reduced alcohol preference at high but not low alcohol concentrations. Glial cell- or neuron-specific Aldh2 deficiency did not affect voluntary alcohol consumption. Finally, specific liver Aldh2 knockdown via injection of shAldh2 markedly decreased alcohol preference. In conclusion, although the liver is the major organ responsible for acetaldehyde metabolism, a cumulative effect of ALDH2 from other organs likely also contributes to systemic acetaldehyde clearance. Liver-targeted ALDH2 inhibition can decrease heavy drinking without affecting moderate drinking, providing molecular basis for hepatic ALDH2 targeting/editing for the treatment of AUD.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Etanol/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Acetaldeído/metabolismo , Alanina Transaminase/sangue , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Quimiocina CCL2/metabolismo , Deleção de Genes , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328343

RESUMO

Targeting cannabinoid 1 receptors (CB1R) with peripherally restricted antagonists (or inverse agonists) shows promise to improve metabolic disorders associated with obesity. In this context, we designed and synthetized JM-00266, a new CB1R blocker with limited blood-brain barrier (BBB) permeability. Pharmacokinetics were tested with SwissADME and in vivo in rodents after oral and intraperitoneal administration of JM-00266 in comparison with Rimonabant. In silico predictions indicated JM-00266 is a non-brain penetrant compound and this was confirmed by brain/plasma ratios and brain uptake index values. JM-00266 had no impact on food intake, anxiety-related behavior and body temperature suggesting an absence of central activity. cAMP assays performed in CB1R-transfected HEK293T/17 cells showed that the drug exhibited inverse agonist activity on CB1R. In addition, JM-00266 counteracted anandamide-induced gastroparesis indicating substantial peripheral activity. Acute administration of JM-00266 also improved glucose tolerance and insulin sensitivity in wild-type mice, but not in CB1R-/- mice. Furthermore, the accumulation of JM-00266 in adipose tissue was associated with an increase in lipolysis. In conclusion, JM-00266 or derivatives can be predicted as a new candidate for modulating peripheral endocannabinoid activity and improving obesity-related metabolic disorders.


Assuntos
Antagonistas de Receptores de Canabinoides , Doenças Metabólicas , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides
4.
J Lipid Res ; 62: 100013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518513

RESUMO

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase
5.
Hepatology ; 69(4): 1535-1548, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30506571

RESUMO

Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure. Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver. Exposure of primary mouse hepatocytes and HepG2 cells to the CB1 R agonist arachidonyl-2'-chloroethylamide inhibited the expression of Sirtuin-1 (Sirt1) and Rictor, a component of mechanistic target of rapamycin complex 2 (mTORC2) and suppressed insulin-induced Akt phosphorylation at serine 473. These effects were reversed by peripheral CB1 R antagonist JD5037 in control hepatocytes but not in hepatocytes deficient in Sirt1 and/or Rictor, indicating that these two proteins are required for the CB1 R-mediated inhibition of insulin signaling. Feeding C57BL/6J mice a high-fat diet (HFD) inhibited hepatic Sirt1/mTORC2/Akt signaling, and the inhibition was reversed by rimonabant or JD5037 in wild-type but not liver-specific Sirt1-/- (Sirt1-LKO) mice, to levels observed in hepatocyte-specific CB1 R-/- mice. A similar attenuation of hyperglycemia and hyperinsulinemia in wild-type mice with obesity but not in Sirt1-LKO mice could be attributed to insufficient reversal of HFD-induced mitochondrial reactive oxygen species generation in peripheral tissues in the latter. In contrast, JD5037 treatment was equally effective in HFD-fed wild-type and Sirt1-LKO mice in reducing hepatic steatosis, increasing fatty acid ß-oxidation, and activating 5'adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1), resulting in a similar increase in total energy expenditure in the two strains. Conclusion: Peripheral CB1 R blockade in mice with obesity improves glycemic control through the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation through LKB1/AMPK signaling.


Assuntos
Resistência à Insulina , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sirtuína 1/metabolismo , Sulfonamidas/farmacologia , Adenilato Quinase/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
6.
Hepatology ; 68(4): 1519-1533, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631342

RESUMO

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Assuntos
Injúria Renal Aguda/metabolismo , Arginina/metabolismo , Síndrome Hepatorrenal/patologia , Túbulos Renais/patologia , Óxido Nítrico Sintase/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Modelos Animais de Doenças , Progressão da Doença , Síndrome Hepatorrenal/mortalidade , Síndrome Hepatorrenal/fisiopatologia , Humanos , Imuno-Histoquímica , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Medição de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Taxa de Sobrevida
7.
Diabetes Obes Metab ; 20(3): 698-708, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29106063

RESUMO

AIMS: To determine the specific role of podocyte-expressed cannabinoid-1 receptor (CB1 R) in the development of diabetic nephropathy (DN), relative to CB1 R in other renal cell types. MATERIAL AND METHODS: We developed a mouse model with a podocyte-specific deletion of CB1 R (pCB1Rko) and challenged this model with streptozotocin (STZ)-induced type-1 DN. We also assessed the podocyte response to high glucose in vitro and its effects on CB1 R activation. RESULTS: High glucose exposure for 48 hours led to an increase in CB1 R gene expression (CNR1) and endocannabinoid production in cultured human podocytes. This was associated with podocyte injury, reflected by decreased podocin and nephrin expression. These changes could be prevented by Cnr1-silencing, thus identifying CB1R as a key player in podocyte injury. After 12 weeks of chronic hyperglycaemia, STZ-treated pCB1Rko mice showed elevated blood glucose similar to that of their wild-type littermates. However, they displayed less albuminuria and less podocyte loss than STZ-treated wild-type mice. Unexpectedly, pCB1Rko mice also have milder tubular dysfunction, fibrosis and reduction of cortical microcirculation compared to wild-type controls, which is mediated, in part, by podocyte-derived endocannabinoids acting via CB1 R on proximal tubular cells. CONCLUSIONS: Activation of CB1 R in podocytes contributes to both glomerular and tubular dysfunction in type-1 DN, which highlights the therapeutic potential of peripheral CB1 R blockade.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Glomérulos Renais/fisiologia , Túbulos Renais Proximais/fisiologia , Podócitos/metabolismo , Receptores de Canabinoides/deficiência , Animais , Arginase/metabolismo , Hipóxia Celular/fisiologia , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Glucose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/irrigação sanguínea , Proteínas de Membrana/metabolismo , Camundongos , Microcirculação/fisiologia , Estresse Oxidativo/fisiologia , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(50): E5420-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25422468

RESUMO

Diabetic nephropathy is a major cause of end-stage kidney disease, and overactivity of the endocannabinoid/cannabinoid 1 receptor (CB1R) system contributes to diabetes and its complications. Zucker diabetic fatty (ZDF) rats develop type 2 diabetic nephropathy with albuminuria, reduced glomerular filtration, activation of the renin-angiotensin system (RAS), oxidative/nitrative stress, podocyte loss, and increased CB1R expression in glomeruli. Peripheral CB1R blockade initiated in the prediabetic stage prevented these changes or reversed them when animals with fully developed diabetic nephropathy were treated. Treatment of diabetic ZDF rats with losartan, an angiotensin II receptor-1 (Agtr1) antagonist, attenuated the development of nephropathy and down-regulated renal cortical CB1R expression, without affecting the marked hyperglycemia. In cultured human podocytes, CB1R and desmin gene expression were increased and podocin and nephrin content were decreased by either the CB1R agonist arachydonoyl-2'-chloroethylamide, angiotensin II, or high glucose, and the effects of all three were antagonized by CB1R blockade or siRNA-mediated knockdown of CNR1 (the cannabinoid type 1 receptor gene). We conclude that increased CB1R signaling in podocytes contributes to the development of diabetic nephropathy and represents a common pathway through which both hyperglycemia and increased RAS activity exert their deleterious effects, highlighting the therapeutic potential of peripheral CB1R blockade.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/metabolismo , Modelos Biológicos , Podócitos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Análise de Variância , Angiotensina II/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Desmina/metabolismo , Nefropatias Diabéticas/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Losartan/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Zucker , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sulfonamidas/síntese química , Sulfonamidas/farmacologia
9.
Proc Natl Acad Sci U S A ; 110(47): 18832-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191036

RESUMO

High-fat diet (HFD)-induced obesity and insulin resistance are associated with increased activity of the endocannabinoid/CB1 receptor (CB1R) system that promotes the hepatic expression of lipogenic genes, including stearoyl-CoA desaturase-1 (SCD1). Mice deficient in CB1R or SCD1 remain lean and insulin-sensitive on an HFD, suggesting a functional link between the two systems. The HFD-induced increase in the hepatic levels of the endocannabinoid anandamide [i.e., arachidonoylethanolamide (AEA)] has been attributed to reduced activity of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH). Here we show that HFD-induced increased hepatic AEA levels and decreased FAAH activity are absent in SCD1(-/-) mice, and the monounsaturated fatty acid (MUFA) products of SCD1, palmitoleic and oleic acid, inhibit FAAH activity in vitro at low micromolar concentrations. HFD markedly increases hepatic SCD1 activity in WT mice as well as in CB1R(-/-) mice with transgenic reexpression of CB1R in hepatocytes, but not in global CB1R(-/-) mice. Treatment of HFD-fed mice with the SCD1 inhibitor A939572 prevents the diet-induced reduction of hepatic FAAH activity, normalizes hepatic AEA levels, and improves insulin sensitivity. SCD1(-/-) mice on an HFD remain insulin-sensitive, but develop glucose intolerance and insulin resistance in response to chronic treatment with the FAAH inhibitor URB597. An HFD rich in MUFA or feeding mice pure oleic acid fail to inhibit hepatic FAAH activity. We conclude that MUFAs generated via SCD1 activity, but not diet-derived MUFAs, function as endogenous FAAH inhibitors mediating the HFD-induced increase in hepatic AEA, which then activates hepatic CB1R to induce insulin resistance.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Análise de Variância , Animais , Ácidos Araquidônicos/biossíntese , Benzamidas , Carbamatos , Endocanabinoides/biossíntese , Ácidos Graxos Monoinsaturados/farmacologia , Retroalimentação Fisiológica/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Hepatology ; 59(1): 143-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23832510

RESUMO

UNLABELLED: Obesity is associated with increased activity of two lipid signaling systems (endocannabinoids [ECs] and ceramides), with both being implicated in insulin resistance. Cannabinoid-1 receptor (CB1 R) antagonists reverse obesity and insulin resistance, but have psychiatric side effects. Here we analyzed the role of ceramide in CB1 R-mediated insulin resistance in C57Bl6/J mice with high-fat diet-induced obesity (DIO), using JD5037, a peripherally restricted CB1 R inverse agonist. Chronic JD5037 treatment of DIO mice reduced body weight and steatosis and improved glucose tolerance and insulin sensitivity. Peripheral CB1 R blockade also attenuated the diet-induced increase in C14:0, C16:0, C18:0, and C20:0 ceramide species with either C16 or C18 sphingosine-base in the liver. Decreased ceramide levels reflected their reduced de novo synthesis, due to inhibition of the activity of serine-palmitoyl transferase (SPT) and the expression of its SPTLC3 catalytic subunit, as well as reduced ceramide synthase (CerS) activity related to reduced expression of CerS1 and CerS6. JD5037 treatment also increased ceramide degradation due to increased expression of ceramidases. In primary cultured mouse hepatocytes and HepG2 cells, the EC anandamide increased ceramide synthesis in an eIF2α-dependent manner, and inhibited insulin-induced akt phosphorylation by increased serine phosphorylation of IRS1 and increased expression of the serine/threonine phosphatase Phlpp1. These effects were abrogated by JD5037 or the SPT inhibitor myriocin. Chronic treatment of DIO mice with myriocin or JD5037 similarly reversed hepatic insulin resistance, as verified using a euglycemic/hyperinsulinemic clamp. CONCLUSION: ECs induce CB1 R-mediated, endoplasmic reticulum stress-dependent synthesis of specific ceramide subspecies in the liver, which plays a key role in obesity-related hepatic insulin resistance.


Assuntos
Ceramidas/biossíntese , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Fígado/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Peso Corporal , Estresse do Retículo Endoplasmático , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Regulação para Cima
11.
Am J Physiol Endocrinol Metab ; 306(4): E457-68, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381003

RESUMO

The adipocyte-derived hormone adiponectin promotes fatty acid oxidation and improves insulin sensitivity and thus plays a key role in the regulation of lipid and glucose metabolism and energy homeostasis. Chronic cannabinoid type 1 (CB1) receptor blockade also increases lipid oxidation and improves insulin sensitivity in obese individuals or animals, resulting in reduced cardiometabolic risk. Chronic CB1 blockade reverses the obesity-related decline in serum adiponectin levels, which has been proposed to account for the metabolic effects of CB1 antagonists. Here, we investigated the metabolic actions of the CB1 inverse agonist rimonabant in high-fat diet (HFD)-induced obese adiponectin knockout (Adipo(-/-)) mice and their wild-type littermate controls (Adipo(+/+)). HFD-induced obesity and its hormonal/metabolic consequences were indistinguishable in the two strains. Daily treatment of obese mice with rimonabant for 7 days resulted in significant and comparable reductions in body weight, serum leptin, free fatty acid, cholesterol, and triglyceride levels in the two strains. Rimonabant treatment improved glucose homeostasis and insulin sensitivity to the same extent in Adipo(+/+) and Adipo(-/-) mice, whereas it reversed the HFD-induced hepatic steatosis, fibrosis, and hepatocellular damage only in the former. The adiponectin-dependent, antisteatotic effect of rimonabant was mediated by reduced uptake and increased ß-oxidation of fatty acids in the liver. We conclude that reversal of the HFD-induced hepatic steatosis and fibrosis by chronic CB1 blockade, but not the parallel reduction in adiposity and improved glycemic control, is mediated by adiponectin.


Assuntos
Adiponectina/metabolismo , Peso Corporal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Adiponectina/genética , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Ingestão de Energia/efeitos dos fármacos , Fígado Gorduroso/genética , Leptina/metabolismo , Metabolismo dos Lipídeos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade/genética , Rimonabanto
12.
Hepatology ; 55(3): 790-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21987372

RESUMO

UNLABELLED: It is well established that inactivation of the central endocannabinoid system (ECS) through antagonism of cannabinoid receptor 1 (CB1R) reduces food intake and improves several pathological features associated with obesity, such as dyslipidemia and liver steatosis. Nevertheless, recent data indicate that inactivation of peripheral CB1R could also be directly involved in the control of lipid metabolism independently of central CB1R. To further investigate this notion, we tested the direct effect of the specific CB1R antagonist, SR141716, on hepatic carbohydrate and lipid metabolism using cultured liver slices. CB1R messenger RNA expression was strongly decreased by SR141716, whereas it was increased by the CB1R agonist, arachidonic acid N-hydroxyethylamide (AEA), indicating the effectiveness of treatments in modulating ECS activity in liver explants both from lean or ob/ob mice. The measurement of O(2) consumption revealed that SR141716 increased carbohydrate or fatty acid utilization, according to the cellular hormonal environment. In line with this, SR141716 stimulated ß-oxidation activity, and the role of CB1R in regulating this pathway was particularly emphasized when ECS was hyperactivated by AEA and in ob/ob tissue. SR141716 also improved carbohydrate and lipid metabolism, blunting the AEA-induced increase in gene expression of proteins related to lipogenesis. In addition, we showed that SR141716 induced cholesterol de novo synthesis and high-density lipoprotein uptake, revealing a relationship between CB1R and cholesterol metabolism. CONCLUSION: These data suggest that blocking hepatic CB1R improves both carbohydrate and lipid metabolism and confirm that peripheral CB1R should be considered as a promising target to reduce cardiometabolic risk in obesity.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Obesidade/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Colesterol/metabolismo , Modelos Animais de Doenças , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/prevenção & controle , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obesidade/complicações , Obesidade/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Rimonabanto , Técnicas de Cultura de Tecidos
13.
Drug Alcohol Depend ; 245: 109809, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822122

RESUMO

Growing evidence indicates that the crosstalk between the central nervous system and the periphery plays an important role in the pathophysiology of neuropsychiatric conditions, including addictive disorders. Fibroblast growth factor 21 (FGF21) is part of the liver-brain axis and regulates energy homeostasis, metabolism, and macronutrient intake. In addition, FGF21 signaling modulates alcohol intake and preference, and changes in FGF21 levels are observed following alcohol consumption. To further elucidate the relationship between alcohol use and FGF21, we assessed serum FGF21 concentrations in 16 non-treatment seeking individuals with alcohol use disorder (AUD) in a naturalistic outpatient setting, as well as a controlled laboratory experiment that included alcohol cue-reactivity, alcohol priming, and alcohol self-administration in a bar-like setting. FGF21 levels were stable during the outpatient phase when participants received placebo and had no significant lifestyle changes. During the bar-like laboratory experiment, a robust increase in serum FGF21 concentrations was found after the 2-hr alcohol self-administration session (F3, 49 = 23.39, p < 0.001). Percent change in FGF21 levels positively correlated with the amount of alcohol self-administered but did not reach statistical significance. No significant changes in FGF21 levels were found after exposure to alcohol cues or consuming the priming drink. Given the bidirectional link between FGF21 and alcohol, targeting the FGF21 system may be further examined as a potential pharmacotherapy for AUD.


Assuntos
Alcoolismo , Humanos , Consumo de Bebidas Alcoólicas , Fatores de Crescimento de Fibroblastos/metabolismo , Etanol
14.
Front Nephrol ; 3: 1138416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675364

RESUMO

Objective: This study assessed the efficacy of INV-202, a novel peripherally restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a streptozotocin-induced type-1 diabetes nephropathy mouse model. Methods: Diabetes was induced in 8-week-old C57BL6/J male mice via intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days); nondiabetic controls received citrate buffer. Diabetic mice were randomized to 3 groups based on blood glucose, polyuria, and albuminuria, and administered daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle. Results: INV-202 did not affect body weight but decreased kidney weight compared with the vehicle group. While polyuria was unaffected by INV-202 treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202 (0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin (control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ± 88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased compared with vehicle-treated diabetic mice. Compared with the vehicle group, there was a significant improvement in the urinary albumin to creatinine ratio across INV-202 groups. Regardless of the dose, INV-202 significantly reduced angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a renal expression in a dose-dependent manner. Compared with nondiabetic controls, the glomerular filtration rate was increased in the vehicle group and significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a significant loss in the mean number of podocytes per glomerulus, INV-202 treatment limited podocyte loss in a dose-dependent manner. Moreover, in both INV-202 groups, expression of genes coding for podocyte structural proteins nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels similar to nondiabetic controls. INV-202 partially limited the proximal tubular epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC lesions. INV-202 also reduced expression of genes contributing to oxidative stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-induced renal fibrosis was significantly reduced by INV-202. Conclusions: INV-202 reduced glomerular injury, preserved podocyte structure and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a streptozotocin-induced diabetic nephropathy mouse model. These results suggest that INV-202 may represent a new therapeutic option in the treatment of diabetic kidney disease.

15.
iScience ; 26(7): 107207, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534180

RESUMO

Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and ß-arrestin1 but is independent of changes in cAMP. Moreover, ß-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in ß-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, ß-arrestin1 or TC-PTP. Altogether, CB1R activation engages ß-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.

16.
Cell Death Dis ; 13(9): 758, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056008

RESUMO

Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-ß receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-ß receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-ß receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-ß receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.


Assuntos
Neoplasias da Mama , Elongases de Ácidos Graxos/metabolismo , Neoplasias Pulmonares , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Lipídeos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Metástase Neoplásica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Front Endocrinol (Lausanne) ; 12: 716431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434170

RESUMO

White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.


Assuntos
Tecido Adiposo Branco/patologia , Endocanabinoides/metabolismo , Metabolismo dos Lipídeos , Lipólise , Obesidade/patologia , Receptor CB1 de Canabinoide/metabolismo , Magreza/patologia , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Ratos , Magreza/metabolismo
18.
ACS Pharmacol Transl Sci ; 4(3): 1175-1187, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34151207

RESUMO

Seven-transmembrane receptors signal via G-protein- and ß-arrestin-dependent pathways. We describe a peripheral CB1R antagonist (MRI-1891) highly biased toward inhibiting CB1R-induced ß-arrestin-2 (ßArr2) recruitment over G-protein activation. In obese wild-type and ßArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CB1R occupancy. By contrast, the unbiased global CB1R antagonist rimonabant elicits anxiety in both strains, indicating no ßArr2 involvement. Interestingly, obesity-induced muscle insulin resistance is improved by MRI-1891 in wild-type but not in ßArr2-KO mice. In C2C12 myoblasts, CB1R activation suppresses insulin-induced akt-2 phosphorylation, preventable by MRI-1891, ßArr2 knockdown or overexpression of CB1R-interacting protein. MRI-1891, but not rimonabant, interacts with nonpolar residues on the N-terminal loop, including F108, and on transmembrane helix-1, including S123, a combination that facilitates ßArr2 bias. Thus, CB1R promotes muscle insulin resistance via ßArr2 signaling, selectively mitigated by a biased CB1R antagonist at reduced risk of central nervous system (CNS) side effects.

19.
Clin Transl Med ; 11(7): e471, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323400

RESUMO

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Assuntos
Síndrome de Hermanski-Pudlak/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fibrose Pulmonar/patologia , Receptor CB1 de Canabinoide/metabolismo , Adulto , Animais , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Ácidos Araquidônicos/metabolismo , Bleomicina/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Síndrome de Hermanski-Pudlak/complicações , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Interleucina-11/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Alcamidas Poli-Insaturadas/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Fator de Crescimento Transformador beta1/metabolismo
20.
Diabetes Metab Res Rev ; 26(4): 297-305, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503262

RESUMO

BACKGROUND: Pioglitazone (PIO) and rosiglitazone (ROSI) are widely used as oral antidiabetic agents for treatment of type 2 diabetes. Although these medications exert similar effects on blood glucose, recent clinical studies indicated that PIO has a more pronounced beneficial effect on lipid parameters than ROSI. In order to get further insight into the lipid effects of both drugs, we tested whether PIO, compared to ROSI, could exert direct effects on lipid liver metabolism in relation with plasma lipids. METHODS: We performed in vitro studies using mice liver slices incubated 21 h either with ROSI (1 micromol/L) or PIO (7.5 micromol/L). RESULTS: We showed that both glitazones slightly reduced HMG-CoA reductase mRNA levels at the same degree but only PIO reduced intracellular cholesterol content, suggesting an alteration of cholesterol uptake rather than an inhibition of cholesterol biosynthesis. This concept was supported by the reduction of scavenger receptor class B type I expression, hepatic lipase activity and high-density lipoprotein cholesterol uptake in PIO-treated liver explants. Conversely, hepatic lipase mRNA levels were increased 3.5-fold. ROSI, but not PIO, induced acetyl-CoA carboxylase and fatty acid synthase gene expression and increased apoB secretion suggesting a stimulation of lipogenesis. Concurrently, peroxisome proliferator-activated receptor-gamma mRNA levels were induced by ROSI and not significantly changed by PIO. Besides, PIO appeared to be a more potent activator of AMP-Activated Protein Kinase than ROSI. CONCLUSIONS: PIO and ROSI exert specific direct effects on liver and extrapolating these data to humans could explain the significant improvements in plasma lipids observed in diabetic patients treated with PIO.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , HDL-Colesterol/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Lipase/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Pioglitazona , Rosiglitazona , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa