RESUMO
BACKGROUND: Recent development in tau-sensitive tracers has sparkled significant interest in tracking tauopathies using positron emission tomography (PET) biomarkers. However, the ability of 18 F-florzolotau PET imaging to topographically characterize tau pathology in corticobasal syndrome (CBS) remains unclear. Further, the question as to whether disease-level differences exist with other neurodegenerative tauopathies is still unanswered. OBJECTIVE: To analyze the topographical patterns of tau pathology in the living brains of patients with CBS using 18 F-florzolotau PET imaging and to examine whether differences with other tauopathies exist. METHODS: 18 F-florzolotau PET imaging was performed in 20 consecutive patients with CBS, 20 cognitively healthy controls (HCs), 20 patients with Alzheimer's disease (AD), and 16 patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Cerebrospinal fluid (CSF) levels of ß-amyloid biomarkers were quantified in all patients with CBS. 18 F-florzolotau uptake was quantitatively assessed using standardized uptake value ratios. RESULTS: Of the 20 patients with CBS, 19 (95%) were negative for CSF biomarkers of amyloid pathology; of them, three had negative 18 F-florzolotau PET findings. Compared with HCs, patients with CBS showed increased 18 F-florzolotau signals in both cortical and subcortical regions. In addition, patients with CBS were characterized by higher tracer retentions in subcortical regions compared with those with AD and showed a trend toward higher signals in cortical areas compared with PSP-RS. An asymmetric pattern of 18 F-florzolotau uptake was associated with an asymmetry of motor severity in patients with CBS. CONCLUSIONS: In vivo 18 F-florzolotau PET imaging holds promise for distinguishing CBS in the spectrum of neurodegenerative tauopathies. © 2023 International Parkinson and Movement Disorder Society.
Assuntos
Degeneração Corticobasal , Tomografia por Emissão de Pósitrons , Tauopatias , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Degeneração Corticobasal/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Tauopatias/diagnóstico por imagemRESUMO
BACKGROUND: Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE: The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS: Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS: Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS: Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Estudos Transversais , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Mutação/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
BACKGROUND: Anecdotal evidence suggests that patients diagnosed with the parkinsonian subtype of multiple system atrophy (MSA-P) may show uptake of the second-generation tau positron emission tomography (PET) tracer 18 F-Florzolotau (previously known as 18 F-APN-1607) in the putamen. OBJECTIVES: This study systematically investigated the localization and magnitude of 18 F-Florzolotau uptake in a relatively large cohort of patients with MSA-P. METHODS: 18 F-Florzolotau PET imaging was performed in 31 patients with MSA-P, 24 patients with Parkinson's disease (PD), and 20 age-matched healthy controls. 18 F-Florzolotau signal in the striatum was analyzed by visual inspection and classified as either positive or negative. Regional 18 F-Florzolotau binding was also expressed as standardized uptake value ratio (SUVR) to assess whether it was associated with core symptoms of MSA-P after adjustment for potential confounders. RESULTS: By visual inspection and semiquantitative SUVR comparisons, patients with MSA-P showed elevated 18 F-Florzolotau uptake in the putamen, globus pallidus, and dentate-a finding that was not observed in PD. This increased signal was significantly associated with the core symptoms of MSA-P. In addition, patients with MSA-P with cerebellar ataxia showed an elevated 18 F-Florzolotau uptake in the cerebellar dentate. CONCLUSIONS: 18 F-Florzolotau tau PET imaging findings may reflect the clinical severity of MSA-P and can potentially discriminate between this condition and PD. © 2022 International Parkinson and Movement Disorder Society.