Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 356: 120607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537471

RESUMO

Mining activities are increasingly recognized for contributing to nitrogen (N) pollution and possibly also to emissions of the greenhouse gas nitrous oxide (N2O) due to undetonated, N-based explosives. A woodchip denitrifying bioreactor, installed to treat nitrate-rich leachate from waste rock dumps in northern Sweden, was monitored for two years to determine the spatial and temporal distribution of microbial communities, including the genetic potential for different N transformation processes, in pore water and woodchips and how this related to reactor N removal capacity. About 80 and 65 % of the nitrate was removed during the first and second operational year, respectively. There was a succession in the microbial community over time and in space along the reactor length in both pore water and woodchips, which was reflected in reactor performance. Nitrate ammonification likely had minimal impact on N removal efficiency due to the low production of ammonium and low abundance of the key gene nrfA in ammonifiers. Nitrite and N2O were formed in the bioreactor and released in the effluent water, although direct N2O emissions from the surface was low. That these unwanted reactive N species were produced at different times and locations in the reactor indicate that the denitrification pathway was temporally as well as spatially separated along the reactor length. We conclude that the succession of microbial communities in woodchip denitrifying bioreactors treating mining water develops slowly at low temperature, which impacts reactor performance.


Assuntos
Desnitrificação , Nitratos , Temperatura , Água , Reatores Biológicos
2.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475696

RESUMO

Soil microbial diversity and community composition are shaped by various factors linked to land management, topographic position, and vegetation. To study the effects of these drivers, we characterized fungal and bacterial communities from bulk soil at four soil depths ranging from the surface to below the rooting zone of two Swedish grasslands with differing land-use histories, each including both an upper and a lower catenary position. We hypothesized that differences in plant species richness and plant functional group composition between the four study sites would drive the variation in soil microbial community composition and correlate with microbial diversity, and that microbial biomass and diversity would decrease with soil depth following a decline in resource availability. While vegetation was identified as the main driver of microbial community composition, the explained variation was significantly higher for bacteria than for fungi, and the communities differed more between grasslands than between catenary positions. Microbial biomass derived from DNA abundance decreased with depth, but diversity remained relatively stable, indicating diverse microbial communities even below the rooting zone. Finally, plant-microbial diversity correlations were significant only for specific plant and fungal functional groups, emphasizing the importance of functional interactions over general species richness.


Assuntos
Microbiota , Solo , Solo/química , Pradaria , Suécia , Microbiologia do Solo , Bactérias/genética , Plantas , Fungos/genética
3.
Front Microbiol ; 13: 877990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685927

RESUMO

Global water supplies are threatened by climate changes and the expansion of urban areas, which have led to an increasing interest in nature-based solutions for water reuse and reclamation. Reclaimed water is a possible resource for recharging aquifers, and the addition of an organic reactive barrier has been proposed to improve the removal of pollutants. There has been a large focus on organic pollutants, but less is known about multifunctional barriers, that is, how barriers also remove nutrients that threaten groundwater ecosystems. Herein, we investigated how compost- and woodchip-based barriers affect nitrogen (N) removal in a pilot soil aquifer treatment facility designed for removing nutrients and recalcitrant compounds by investigating the composition of microbial communities and their capacity for N transformations. Secondary-treated, ammonium-rich wastewater was infiltrated through the barriers, and the changes in the concentration of ammonium, nitrate, and dissolved organic carbon (DOC) were measured after passage through the barrier during 1 year of operation. The development and composition of the microbial community in the barriers were examined, and potential N-transforming processes in the barriers were quantified by determining the abundance of key functional genes using quantitative PCR. Only one barrier, based on compost, significantly decreased the ammonium concentration in the infiltrated water. However, the reduction of reactive N in the barriers was moderate (between 21 and 37%), and there were no differences between the barrier types. All the barriers were after 1 year dominated by members of Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria, although the community composition differed between the barriers. Bacterial classes belonging to the phylum Chloroflexi showed an increased relative abundance in the compost-based barriers. In contrast to the increased genetic potential for nitrification in the compost-based barriers, the woodchip-based barrier demonstrated higher genetic potentials for denitrification, nitrous oxide reduction, and dissimilatory reduction of nitrate to ammonium. The barriers have previously been shown to display a high capacity to degrade recalcitrant pollutants, but in this study, we show that most barriers performed poorly in terms of N removal and those based on compost also leaked DOC, highlighting the difficulties in designing barriers that satisfactorily meet several purposes.

4.
Front Microbiol ; 13: 935378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187988

RESUMO

Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year. The lake shows a rich core bacterioplankton community consisting of three components: (i) an assemblage stable throughout the year, dominated by Actinobacteria, resistant to all environmental conditions; (ii) an ice-on-resilient assemblage dominating during the ice-covered period, which is more diverse than the other components and includes a high abundance of Verrucomicrobia; the deep hypolimnion constitutes a refuge for many of the typical under-ice taxa, many of which recover quickly during autumn mixing; and (iii) an ice-off-resilient assemblage, which members peak in summer in epilimnetic waters when the rest decline, characterized by a dominance of Flavobacterium, and Limnohabitans. The rich core community and low random elements compared to other relatively small cold lakes can be attributed to its simple hydrological network in a poorly-vegetated catchment, the long water-residence time (ca. 4 years), and the long ice-cover duration; features common to many headwater deep high-mountain lakes.

5.
Sci Total Environ ; 755(Pt 1): 143023, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33158531

RESUMO

High levels of nitrogen originating from blasting operations, for example at mining sites or quarries, risk contaminating water bodies through leaching from waste rock dumps. Woodchip bioreactors can be a simple and cost-effective way of reducing nitrate concentrations in the leachate. In this study we investigated how bottle sedge, barley straw, and pine woodchips used as electron donors for denitrification influenced microbial community composition and nitrate removal in lab-scale bioreactors during 270 days. The reactors were operated to ensure that nitrate was never limiting and to achieve similar nitrate removal (%). Distinct bacterial communities developed due to the different substrates, as determined by sequencing of the 16S rRNA gene. Sedge and straw reactors shared more taxa with each other than with woodchips and throughout the experimental period, sedge and straw were more diverse than woodchips. Cellulose degrading bacteria like Fibrobacteres and Verrucomicrobia were detected in the substrates after 100-150 days of operation. Nitrate removal rates were highest in the sedge and straw reactors. After initial fluctuations, these reactors removed 5.1-6.3 g N m-3 water day-1, which was 3.3-4.4 times more than in the woodchip reactors. This corresponded to 48%, 42%, and 44% nitrate removal for the sedge, straw, and woodchip reactors respectively. The functional communities were characterized by quantitative PCR and denitrification was the major nitrate removing process based on genetic potential and water chemistry, although sedge and straw developed a capacity for ammonification. Gene ratios suggested that denitrification was initially incomplete and terminating with nitrous oxide. An increase in abundances of nitrous oxide reducing capacity in all substrate types towards the end increased the potential for less emissions of the greenhouse gas nitrous oxide.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , RNA Ribossômico 16S , Temperatura
6.
Water Res ; 158: 22-33, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009831

RESUMO

Explosives used in mining operations release reactive nitrogen (N) that discharge into surrounding waters. Existing pond systems at mine sites could be used for N removal through denitrification and we investigated capacity in tailings and clarification pond sediments at an iron-ore mine site. Despite differences in microbial community structure in the two ponds, the potential denitrification rates were similar, although carbon limited. Therefore, a microcosm experiment in which we amended sediment from the clarification pond with acetate, cellulose or green algae as possible carbon sources was conducted during 10 weeks under denitrifying conditions. Algae and acetate treatments showed efficient nitrate removal and increased potential denitrification rates, whereas cellulose was not different from the control. Denitrifiers were overall more abundant than bacteria performing dissimilatory nitrate reduction to ammonium (DNRA) or anaerobic ammonium oxidation, although DNRA bacteria increased in the algae treatment and this coincided with accumulation of ammonium. The algae addition also caused higher emissions of methane (CH4) and nitrous oxide (N2O). The bacterial community in this treatment had a large proportion of Bacteroidia, sulfate reducing taxa and bacteria known as fermenters. Functional gene abundances indicated an imbalance between organisms that produce N2O in relation to those that can reduce it, with the algae treatment showing the lowest relative capacity for N2O reduction. These findings show that pond sediments have the potential to contribute to mitigating nitrate levels in water from mining industry, but it is important to consider the type of carbon supply as it affects the community composition, which in turn can lead to unwanted processes and increased greenhouse gas emissions.


Assuntos
Carbono , Desnitrificação , Bactérias , Óxido Nitroso , Lagoas
7.
Sci Rep ; 7: 44489, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295022

RESUMO

High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.

8.
Sci Adv ; 3(2): e1601475, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246634

RESUMO

Ecosystems worldwide are facing habitat homogenization due to human activities. Although it is commonly proposed that such habitat homogenization can have negative repercussions for ecosystem functioning, this question has yet to receive explicit scientific attention. We expand on the framework for evaluating the functional consequences of biodiversity loss by scaling up from the level of species to the level of the entire habitats. Just as species diversity generally fosters ecosystem functioning through positive interspecies interactions, we hypothesize that different habitats within ecosystems can facilitate each other through structural complementarity and through exchange of material and energy across habitats. We show that experimental ecosystems comprised of a diversity of habitats show higher levels of multiple ecosystem functions than ecosystems with low habitat diversity. Our results demonstrate that the effect of habitat diversity on multifunctionality varies with season; it has direct effects on ecosystem functioning in summer and indirect effects, via changes in species diversity, in autumn, but no effect in spring. We propose that joint consideration of habitat diversity and species diversity will prove valuable for both environmental management and basic research.


Assuntos
Biodiversidade , Ecossistema , Animais , Bactérias/crescimento & desenvolvimento , Modelos Lineares , Microalgas/crescimento & desenvolvimento , Fixação de Nitrogênio , Estações do Ano
9.
Microbiol Res ; 168(7): 415-27, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23510642

RESUMO

The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Citocromo P-450 CYP4A/genética , Gasolina/análise , Dados de Sequência Molecular , Petróleo/análise , Filogenia
10.
Genes (Basel) ; 2(4): 853-68, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24710296

RESUMO

Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly prevalent among bacterial genera Pseudomonas and Acinetobacter. Out of 61 plasmid-containing strains (29% of all isolates), 34 strains were found to carry large plasmids, which could be associated with the biodegradative capabilities of the host bacterial strains. Focusing on the diversity of IncP-9 plasmids, self-transmissible m-toluate (TOL) and salicylate (SAL) plasmids were detected. Sequencing the repA gene of IncP-9 carrying isolates revealed a high diversity within IncP-9 plasmid family, as well as extended the assumed bacterial host species range of the IncP-9 representatives. This study is the first insight into the genetic pool of the IncP-9 catabolic plasmids in the Baltic Sea bacterioplankton.

11.
Sci Total Environ ; 407(13): 3958-71, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19157517

RESUMO

The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.


Assuntos
Biomassa , Microbiologia do Solo , Microbiologia da Água , Áreas Alagadas
12.
FEMS Microbiol Ecol ; 70(3): 446-55, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732146

RESUMO

A long-term field experiment was carried out to estimate the efficiency of bioaugmentation in combination with phytoremediation for oil shale chemical industry solid waste dump area remediation. Soil samples for microbiological and chemical analysis were collected during 3 years after bacterial biomass application. Microbial communities in soil samples were analysed using both culture-based and molecular methods. The survival of the introduced bacterial strains was confirmed by cultivation-based Box-PCR genomic fingerprints and denaturing gradient gel electrophoresis fingerprinting of the 16S rRNA and lmPH genes. The introduced bacterial strains as well as corresponding catabolic genes were recovered several years after biomass application, predominantly from the rhizosphere of birches. Soil samples from bioaugmented plots showed an elevated potential for degradation of phenolic compounds even 40 months after treatment. Based on our results we can conclude that the introduced Pseudomonas strains both survived, and their metabolic traits have persisted at the contaminated site over a long period of time.


Assuntos
Biodegradação Ambiental , Resíduos Industriais , Pseudomonas/isolamento & purificação , Eliminação de Resíduos/métodos , Microbiologia do Solo , Impressões Digitais de DNA , DNA Bacteriano/análise , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , RNA Ribossômico 16S/análise , Solo/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-15921275

RESUMO

Microbial community structure was assessed in a horizontal subsurface flow planted sand filter treating domestic wastewater with molecular and culture-based methods. The diversity and spatial distribution of the microbial community was investigated using a PCR-DGGE (eubacterial and archaeal primers, ammonia-oxidizing bacteria, and ammonium monooxygenase specific primers), and spread plate and MPN counts. Significant differences were found in the spatial distribution of the microbial community structure. Data analysis revealed that different components of the microbial community possessed different spatial distribution patterns within the filter bed and depending on community type, relationships with soil chemical, and microbiological parameters varied. The most important spatial pattern in microbial community structure within the constructed wetland was related to the depth gradient, followed by differences between inflow and outflow. A comparison of a number of heterotrophic bacteria between inlet and outlet pipes as well as between two sampling depths showed no significant differences. In addition, the variation of the abundance of ammonia-oxidizing bacteria demonstrated no clear spatial pattern.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiologia do Solo , Eliminação de Resíduos Líquidos/métodos , DNA Bacteriano/análise , Filtração , Reação em Cadeia da Polimerase , Dinâmica Populacional , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa