Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(4): e5095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213096

RESUMO

The standard treatment in glioblastoma includes maximal safe resection followed by concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first follow-up study to evaluate treatment response is performed 1 month after concomitant treatment, when contrast-enhancing regions may appear that can correspond to true progression or pseudoprogression. We retrospectively evaluated 31 consecutive patients at the first follow-up after concomitant treatment to check whether the metabolic pattern assessed with multivoxel MRS was predictive of treatment response 2 months later. We extracted the underlying metabolic patterns of the contrast-enhancing regions with a blind-source separation method and mapped them over the reference images. Pattern heterogeneity was calculated using entropy, and association between patterns and outcomes was measured with Cramér's V. We identified three distinct metabolic patterns-proliferative, necrotic, and responsive, which were associated with status 2 months later. Individually, 70% of the patients showed metabolically heterogeneous patterns in the contrast-enhancing regions. Metabolic heterogeneity was not related to the regions' size and only stable patients were less heterogeneous than the rest. Contrast-enhancing regions are also metabolically heterogeneous 1 month after concomitant treatment. This could explain the reported difficulty in finding robust pseudoprogression biomarkers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Seguimentos , Estudos Retrospectivos , Dacarbazina/uso terapêutico , Quimiorradioterapia/métodos , Progressão da Doença , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos
2.
NMR Biomed ; 36(12): e5020, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37582395

RESUMO

Magnetic resonance spectroscopy (MRS) is an MR technique that provides information about the biochemistry of tissues in a noninvasive way. MRS has been widely used for the study of brain tumors, both preoperatively and during follow-up. In this study, we investigated the performance of a range of variants of unsupervised matrix factorization methods of the non-negative matrix underapproximation (NMU) family, namely, sparse NMU, global NMU, and recursive NMU, and compared them with convex non-negative matrix factorization (C-NMF), which has previously shown a good performance on brain tumor diagnostic support problems using MRS data. The purpose of the investigation was 2-fold: first, to ascertain the differences among the sources extracted by these methods; and second, to compare the influence of each method in the diagnostic accuracy of the classification of brain tumors, using them as feature extractors. We discovered that, first, NMU variants found meaningful sources in terms of biological interpretability, but representing parts of the spectrum, in contrast to C-NMF; and second, that NMU methods achieved better classification accuracy than C-NMF for the classification tasks when one class was not meningioma.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Humanos , Neoplasias Encefálicas/patologia , Espectroscopia de Ressonância Magnética/métodos , Algoritmos
3.
NMR Biomed ; 35(4): e4193, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793715

RESUMO

Despite the success of automated pattern recognition methods in problems of human brain tumor diagnostic classification, limited attention has been paid to the issue of automated data quality assessment in the field of MRS for neuro-oncology. Beyond some early attempts to address this issue, the current standard in practice is MRS quality control through human (expert-based) assessment. One aspect of automatic quality control is the problem of detecting artefacts in MRS data. Artefacts, whose variety has already been reviewed in some detail and some of which may even escape human quality control, have a negative influence in pattern recognition methods attempting to assist tumor characterization. The automatic detection of MRS artefacts should be beneficial for radiology as it guarantees more reliable tumor characterizations, as well as the development of more robust pattern recognition-based tumor classifiers and more trustable MRS data processing and analysis pipelines. Feature extraction methods have previously been used to help distinguishing between good and bad quality spectra to apply subsequent supervised pattern recognition techniques. In this study, we apply feature extraction differently and use a variant of a method for blind source separation, namely Convex Non-Negative Matrix Factorization, to unveil MRS signal sources in a completely unsupervised way. We hypothesize that, while most sources will correspond to the different tumor patterns, some of them will reflect signal artefacts. The experimental work reported in this paper, analyzing a combined short and long echo time 1 H-MRS database of more than 2000 spectra acquired at 1.5T and corresponding to different tumor types and other anomalous masses, provides a first proof of concept that points to the possible validity of this approach.


Assuntos
Algoritmos , Neoplasias Encefálicas , Artefatos , Neoplasias Encefálicas/patologia , Humanos , Reconhecimento Automatizado de Padrão/métodos , Controle de Qualidade
4.
NMR Biomed ; 33(4): e4229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926117

RESUMO

Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Improvements in both therapeutic and follow-up strategies are urgently needed. In previous work we described an oscillatory pattern of response to Temozolomide (TMZ) using a standard administration protocol, detected through MRSI-based machine learning approaches. In the present work, we have introduced the Immune-Enhancing Metronomic Schedule (IMS) with an every 6-d TMZ administration at 60 mg/kg and investigated the consistence of such oscillatory behaviour. A total of n = 17 GL261 GB tumour-bearing C57BL/6j mice were studied with MRI/MRSI every 2 d, and the oscillatory behaviour (6.2 ± 1.5 d period from the TMZ administration day) was confirmed during response. Furthermore, IMS-TMZ produced significant improvement in mice survival (22.5 ± 3.0 d for controls vs 135.8 ± 78.2 for TMZ-treated), outperforming standard TMZ treatment. Histopathological correlation was investigated in selected tumour samples (n = 6) analyzing control and responding fields. Significant differences were found for CD3+ cells (lymphocytes, 3.3 ± 2.5 vs 4.8 ± 2.9, respectively) and Iba-1 immunostained area (microglia/macrophages, 16.8% ± 9.7% and 21.9% ± 11.4%, respectively). Unexpectedly, during IMS-TMZ treatment, tumours from some mice (n = 6) fully regressed and remained undetectable without further treatment for 1 mo. These animals were considered "cured" and a GL261 re-challenge experiment performed, with no tumour reappearance in five out of six cases. Heterogeneous therapy response outcomes were detected in tumour-bearing mice, and a selected group was investigated (n = 3 non-responders, n = 6 relapsing tumours, n = 3 controls). PD-L1 content was found ca. 3-fold increased in the relapsing group when comparing with control and non-responding groups, suggesting that increased lymphocyte inhibition could be associated to IMS-TMZ failure. Overall, data suggest that host immune response has a relevant role in therapy response/escape in GL261 tumours under IMS-TMZ therapy. This is associated to changes in the metabolomics pattern, oscillating every 6 d, in agreement with immune cycle length, which is being sampled by MRSI-derived nosological images.


Assuntos
Administração Metronômica , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Imageamento por Ressonância Magnética , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Memória Imunológica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Carga Tumoral/efeitos dos fármacos
5.
NMR Biomed ; 32(10): e4054, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633389

RESUMO

The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.


Assuntos
Espectroscopia de Ressonância Magnética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Colina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Metaboloma , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ácido Succínico/metabolismo
6.
Magn Reson Med ; 79(5): 2500-2510, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28994492

RESUMO

PURPOSE: To investigate and compare human judgment and machine learning tools for quality assessment of clinical MR spectra of brain tumors. METHODS: A very large set of 2574 single voxel spectra with short and long echo time from the eTUMOUR and INTERPRET databases were used for this analysis. Original human quality ratings from these studies as well as new human guidelines were used to train different machine learning algorithms for automatic quality control (AQC) based on various feature extraction methods and classification tools. The performance was compared with variance in human judgment. RESULTS: AQC built using the RUSBoost classifier that combats imbalanced training data performed best. When furnished with a large range of spectral and derived features where the most crucial ones had been selected by the TreeBagger algorithm it showed better specificity (98%) in judging spectra from an independent test-set than previously published methods. Optimal performance was reached with a virtual three-class ranking system. CONCLUSION: Our results suggest that feature space should be relatively large for the case of MR tumor spectra and that three-class labels may be beneficial for AQC. The best AQC algorithm showed a performance in rejecting spectra that was comparable to that of a panel of human expert spectroscopists. Magn Reson Med 79:2500-2510, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Controle de Qualidade
7.
BMC Neurosci ; 18(1): 13, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086802

RESUMO

BACKGROUND: Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. RESULTS: A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). CONCLUSION: SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).


Assuntos
Isquemia Encefálica/classificação , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética , Software , Acidente Vascular Cerebral/classificação , Animais , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Ácido Láctico/metabolismo , Metabolismo dos Lipídeos , Masculino , Metaboloma , Metabolômica/métodos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo
8.
NMR Biomed ; 30(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28570014

RESUMO

Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment, but resistance always ensues. In previous years, efforts have focused on new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, for example the "metronomic" approaches. In metronomic scheduling studies, cyclophosphamide (CPA) in GL261 GBM growing subcutaneously in C57BL/6 mice was shown not only to activate antitumor CD8+ T-cell response, but also to induce long-term specific T-cell tumor memory. Accordingly, we have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/kg) or TMZ (range 140-240 mg/kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7 T with MRI (T2 -weighted, diffusion-weighted imaging) and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6 ± 21.0 days, n = 30) compared with control (19.4 ± 2.4 days, n = 18). Best results were obtained with 140 mg/kg TMZ (treated, 44.9 ± 29.0 days, n = 12, versus control, 19.3 ± 2.3 days, n = 12), achieving a longer survival rate than previous group work using three cycles of TMZ therapy at 60 mg/kg (33.9 ± 11.7 days, n = 38). Additional interesting findings were, first, clear edema appearance during chemotherapeutic treatment, second, the ability to apply the semi-supervised source analysis previously developed in our group for non-invasive TMZ therapy response monitoring to detect CPA-induced response, and third, the necropsy findings in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/kg), which demonstrated lymphoma incidence. In summary, every 6 day administration schedule of TMZ or CPA improves survival in orthotopic GL261 GBM with respect to controls or non-metronomic therapy, in partial agreement with previous work on subcutaneous GL261.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Imunocompetência , Administração Metronômica , Animais , Neoplasias Encefálicas/patologia , Causas de Morte , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Difusão , Feminino , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Temozolomida , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
9.
BMC Bioinformatics ; 16: 378, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552737

RESUMO

BACKGROUND: Magnetic resonance spectroscopy provides metabolic information about living tissues in a non-invasive way. However, there are only few multi-centre clinical studies, mostly performed on a single scanner model or data format, as there is no flexible way of documenting and exchanging processed magnetic resonance spectroscopy data in digital format. This is because the DICOM standard for spectroscopy deals with unprocessed data. This paper proposes a plugin tool developed for jMRUI, namely jMRUI2XML, to tackle the latter limitation. jMRUI is a software tool for magnetic resonance spectroscopy data processing that is widely used in the magnetic resonance spectroscopy community and has evolved into a plugin platform allowing for implementation of novel features. RESULTS: jMRUI2XML is a Java solution that facilitates common preprocessing of magnetic resonance spectroscopy data across multiple scanners. Its main characteristics are: 1) it automates magnetic resonance spectroscopy preprocessing, and 2) it can be a platform for outputting exchangeable magnetic resonance spectroscopy data. The plugin works with any kind of data that can be opened by jMRUI and outputs in extensible markup language format. Data processing templates can be generated and saved for later use. The output format opens the way for easy data sharing- due to the documentation of the preprocessing parameters and the intrinsic anonymization--for example for performing pattern recognition analysis on multicentre/multi-manufacturer magnetic resonance spectroscopy data. CONCLUSIONS: jMRUI2XML provides a self-contained and self-descriptive format accounting for the most relevant information needed for exchanging magnetic resonance spectroscopy data in digital form, as well as for automating its processing. This allows for tracking the procedures the data has undergone, which makes the proposed tool especially useful when performing pattern recognition analysis. Moreover, this work constitutes a first proposal for a minimum amount of information that should accompany any magnetic resonance processed spectrum, towards the goal of achieving better transferability of magnetic resonance spectroscopy studies.


Assuntos
Algoritmos , Processamento Eletrônico de Dados/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Software , Humanos
10.
NMR Biomed ; 28(12): 1772-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26768492

RESUMO

The INTERPRET project was a multicentre European collaboration, carried out from 2000 to 2002, which developed a decision-support system (DSS) for helping neuroradiologists with no experience of MRS to utilize spectroscopic data for the diagnosis and grading of human brain tumours. INTERPRET gathered a large collection of MR spectra of brain tumours and pseudo-tumoural lesions from seven centres. Consensus acquisition protocols, a standard processing pipeline and strict methods for quality control of the aquired data were put in place. Particular emphasis was placed on ensuring the diagnostic certainty of each case, for which all cases were evaluated by a clinical data validation committee. One outcome of the project is a database of 304 fully validated spectra from brain tumours, pseudotumoural lesions and normal brains, along with their associated images and clinical data, which remains available to the scientific and medical community. The second is the INTERPRET DSS, which has continued to be developed and clinically evaluated since the project ended. We also review here the results of the post-INTERPRET period. We evaluate the results of the studies with the INTERPRET database by other consortia or research groups. A summary of the clinical evaluations that have been performed on the post-INTERPRET DSS versions is also presented. Several have shown that diagnostic certainty can be improved for certain tumour types when the INTERPRET DSS is used in conjunction with conventional radiological image interpretation. About 30 papers concerned with the INTERPRET single-voxel dataset have so far been published. We discuss stengths and weaknesses of the DSS and the lessons learned. Finally we speculate on how the INTERPRET concept might be carried into the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias Encefálicas/classificação , Europa (Continente) , Perfilação da Expressão Gênica/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
NMR Biomed ; 27(11): 1333-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25208348

RESUMO

Non-invasive monitoring of response to treatment of glioblastoma (GB) is nowadays carried out using MRI. MRS and MR spectroscopic imaging (MRSI) constitute promising tools for this undertaking. A temozolomide (TMZ) protocol was optimized for GL261 GB. Sixty-three mice were studied by MRI/MRS/MRSI. The spectroscopic information was used for the classification of control brain and untreated and responding GB, and validated against post-mortem immunostainings in selected animals. A classification system was developed, based on the MRSI-sampled metabolome of normal brain parenchyma, untreated and responding GB, with a 93% accuracy. Classification of an independent test set yielded a balanced error rate of 6% or less. Classifications correlated well both with tumor volume changes detected by MRI after two TMZ cycles and with the histopathological data: a significant decrease (p < 0.05) in the proliferation and mitotic rates and a 4.6-fold increase in the apoptotic rate. A surrogate response biomarker based on the linear combination of 12 spectral features has been found in the MRS/MRSI pattern of treated tumors, allowing the non-invasive classification of growing and responding GL261 GB. The methodology described can be applied to preclinical treatment efficacy studies to test new antitumoral drugs, and begets translational potential for early response detection in clinical studies.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/análise , Antineoplásicos Alquilantes/farmacocinética , Apoptose , Encéfalo/metabolismo , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Dacarbazina/análise , Dacarbazina/farmacocinética , Dacarbazina/uso terapêutico , Esquema de Medicação , Feminino , Glioblastoma/química , Glioblastoma/patologia , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Temozolomida , Carga Tumoral
12.
NMR Biomed ; 27(9): 1009-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042391

RESUMO

In a previous study, we have shown the added value of (1) H MRS for the neuroradiological characterisation of adult human brain tumours. In that study, several methods of MRS analysis were used, and a software program, the International Network for Pattern Recognition of Tumours Using Magnetic Resonance Decision Support System 1.0 (INTERPRET DSS 1.0), with a short-TE classifier, provided the best results. Since then, the DSS evolved into a version 2.0 that contains an additional long-TE classifier. This study has two objectives. First, to determine whether clinicians with no experience of spectroscopy are comparable with spectroscopists in the use of the system, when only minimum training in the use of the system was given. Second, to assess whether or not a version with another TE is better than the initial version. We undertook a second study with the same cases and nine evaluators to assess whether the diagnostic accuracy of DSS 2.0 was comparable with the values obtained with DSS 1.0. In the second study, the analysis protocol was flexible in comparison with the first one to mimic a clinical environment. In the present study, on average, each case required 5.4 min by neuroradiologists and 9 min by spectroscopists for evaluation. Most classes and superclasses of tumours gave the same results as with DSS 1.0, except for astrocytomas of World Health Organization (WHO) grade III, in which performance measured as the area under the curve (AUC) decreased: AUC = 0.87 (0.72-1.02) with DSS 1.0 and AUC = 0.62 (0.55-0.70) with DSS 2.0. When analysing the performance of radiologists and spectroscopists with respect to DSS 1.0, the results were the same for most classes. Having data with two TEs instead of one did not affect the results of the evaluation.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Sistemas de Apoio a Decisões Clínicas , Diagnóstico por Computador/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Algoritmos , Neoplasias Encefálicas/classificação , Humanos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Espanha
13.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254790

RESUMO

Machine Learning is entering a phase of maturity, but its medical applications still lag behind in terms of practical use. The field of oncological radiology (and neuro-oncology in particular) is at the forefront of these developments, now boosted by the success of Deep-Learning methods for the analysis of medical images. This paper reviews in detail some of the most recent advances in the use of Deep Learning in this field, from the broader topic of the development of Machine-Learning-based analytical pipelines to specific instantiations of the use of Deep Learning in neuro-oncology; the latter including its use in the groundbreaking field of ultra-low field magnetic resonance imaging.

14.
Cancers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509372

RESUMO

In vivo magnetic resonance spectroscopy (MRS) has two modalities, single-voxel (SV) and multivoxel (MV), in which one or more contiguous grids of SVs are acquired. PURPOSE: To test whether MV grids can be classified with models trained with SV. METHODS: Retrospective study. Training dataset: Multicenter multiformat SV INTERPRET, 1.5T. Testing dataset: MV eTumour, 3T. Two classification tasks were completed: 3-class (meningioma vs. aggressive vs. normal) and 4-class (meningioma vs. low-grade glioma vs. aggressive vs. normal). Five different methods were tested for feature selection. The classification was implemented using linear discriminant analysis (LDA), random forest, and support vector machines. The evaluation was completed with balanced error rate (BER) and area under the curve (AUC) on both sets. The accuracy in class prediction was calculated by developing a solid tumor index (STI) and segmentation accuracy with the Dice score. RESULTS: The best method was sequential forward feature selection combined with LDA, with AUCs = 0.95 (meningioma), 0.89 (aggressive), 0.82 (low-grade glioma), and 0.82 (normal). STI was 66% (4-class task) and 71% (3-class task) because two cases failed completely and two more had suboptimal STI as defined by us. DISCUSSION: The reasons for failure in the classification of the MV test set were related to the presence of artifacts.

15.
BMC Bioinformatics ; 13: 38, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22401579

RESUMO

BACKGROUND: In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the information provided by both TE should be of use for clinical purposes. In this study, we characterise the performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the best performing NMF method for source separation, we compare its accuracy for class assignment when using the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR). For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS human brain tumour database. RESULTS: The results reported in this paper reveal the advantage of using a recently described variant of NMF, namely Convex-NMF, as an unsupervised method of source extraction from SV1H-MRS. Most of the sources extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or more accurate than those obtained with supervised techniques. CONCLUSIONS: The unsupervised properties of Convex-NMF place this approach one step ahead of classical label-requiring supervised methods for the discrimination of brain tumour types, as it accounts for their increasingly recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted decision support systems is expected to facilitate further improvements in the uptake of MRS-derived information by clinicians.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Bases de Dados Factuais , Humanos , Espectroscopia de Ressonância Magnética
16.
NMR Biomed ; 25(4): 661-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21954036

RESUMO

The purpose of this study was to evaluate whether single-voxel (1)H MRS could add useful information to conventional MRI in the preoperative characterisation of the type and grade of brain tumours. MRI and MRS examinations from a prospective cohort of 40 consecutive patients were analysed double blind by radiologists and spectroscopists before the histological diagnosis was known. The spectroscopists had only the MR spectra, whereas the radiologists had both the MR images and basic clinical details (age, sex and presenting symptoms). Then, the radiologists and spectroscopists exchanged their predictions and re-evaluated their initial opinions, taking into account the new evidence. Spectroscopists used four different systems of analysis for (1)H MRS data, and the efficacy of each of these methods was also evaluated. Information extracted from (1)H MRS significantly improved the radiologists' MRI-based characterisation of grade IV tumours (glioblastomas, metastases, medulloblastomas and lymphomas) in the cohort [area under the curve (AUC) in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.85], and also of the less malignant glial tumours (AUC in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.81). One of the MRS analysis systems used, the INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance) decision support system, outperformed the others, as well as being better than the MRI evaluation for the characterisation of grade III astrocytomas. Thus, preoperative MRS data improve the radiologists' performance in diagnosing grade IV tumours and, for those of grade II-III, MRS data help them to recognise the glial lineage. Even in cases in which their diagnoses were not improved, the provision of MRS data to the radiologists had no negative influence on their predictions.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diagnóstico por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Prospectivos , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
J Biomed Inform ; 44(4): 677-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21377545

RESUMO

In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning stops once this set has been processed. Training these classifiers requires a representative amount of data, but the gathering, preprocess, and validation of samples is expensive and time-consuming. Therefore, for a classical, non-incremental approach to ML, it is necessary to wait long enough to collect all the required data. In contrast, an incremental learning approach may allow us to build an initial classifier with a smaller number of samples and update it incrementally when new data are collected. In this study, an incremental learning algorithm for Gaussian Discriminant Analysis (iGDA) based on the Graybill and Deal weighted combination of estimators is introduced. Each time a new set of data becomes available, a new estimation is carried out and a combination with a previous estimation is performed. iGDA does not require access to the previously used data and is able to include new classes that were not in the original analysis, thus allowing the customization of the models to the distribution of data at a particular clinical center. An evaluation using five benchmark databases has been used to evaluate the behaviour of the iGDA algorithm in terms of stability-plasticity, class inclusion and order effect. Finally, the iGDA algorithm has been applied to automatic brain tumour classification with magnetic resonance spectroscopy, and compared with two state-of-the-art incremental algorithms. The empirical results obtained show the ability of the algorithm to learn in an incremental fashion, improving the performance of the models when new information is available, and converging in the course of time. Furthermore, the algorithm shows a negligible instance and concept order effect, avoiding the bias that such effects could introduce.


Assuntos
Algoritmos , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico , Biologia Computacional/métodos , Análise Discriminante , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética
18.
MAGMA ; 24(1): 35-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21249420

RESUMO

OBJECT: This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain tumour diagnostic classifiers which were trained on databases of 1.5T spectra. This will allow the existing large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the combination of 1.5T and 3T databases. MATERIALS AND METHODS: Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade malignant tumours and common grade II glial tumours were evaluated with a subsequently-acquired set of 155 1.5T and 37 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field strengths (1.5T and 3T) was also performed. RESULTS: Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets (0.87 ± 0.03 for 1.5T and 0.88 ± 0.03 for 3.0T). Moreover, non-significant differences were observed with most metabolite ratios and spectral patterns. CONCLUSION: These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T (1)H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on 1.5T acquisitions can therefore continue to be used with data from the new 3T instruments.


Assuntos
Neoplasias Encefálicas/diagnóstico , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias Encefálicas/metabolismo , Humanos , Prótons , Sensibilidade e Especificidade
19.
BMC Bioinformatics ; 11: 106, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181285

RESUMO

BACKGROUND: SpectraClassifier (SC) is a Java solution for designing and implementing Magnetic Resonance Spectroscopy (MRS)-based classifiers. The main goal of SC is to allow users with minimum background knowledge of multivariate statistics to perform a fully automated pattern recognition analysis. SC incorporates feature selection (greedy stepwise approach, either forward or backward), and feature extraction (PCA). Fisher Linear Discriminant Analysis is the method of choice for classification. Classifier evaluation is performed through various methods: display of the confusion matrix of the training and testing datasets; K-fold cross-validation, leave-one-out and bootstrapping as well as Receiver Operating Characteristic (ROC) curves. RESULTS: SC is composed of the following modules: Classifier design, Data exploration, Data visualisation, Classifier evaluation, Reports, and Classifier history. It is able to read low resolution in-vivo MRS (single-voxel and multi-voxel) and high resolution tissue MRS (HRMAS), processed with existing tools (jMRUI, INTERPRET, 3DiCSI or TopSpin). In addition, to facilitate exchanging data between applications, a standard format capable of storing all the information needed for a dataset was developed. Each functionality of SC has been specifically validated with real data with the purpose of bug-testing and methods validation. Data from the INTERPRET project was used. CONCLUSIONS: SC is a user-friendly software designed to fulfil the needs of potential users in the MRS community. It accepts all kinds of pre-processed MRS data types and classifies them semi-automatically, allowing spectroscopists to concentrate on interpretation of results with the use of its visualisation tools.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Proteômica/métodos , Software , Análise de Sequência com Séries de Oligonucleotídeos , Curva ROC
20.
BMC Bioinformatics ; 11: 581, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114820

RESUMO

BACKGROUND: Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS) in MRS data analysis has been explored. RESULTS: This work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI). Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA) were trained and tested. CONCLUSIONS: The INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses.


Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/patologia , Espectroscopia de Ressonância Magnética/métodos , Software , Neoplasias Encefálicas/patologia , Bases de Dados Factuais , Técnicas de Apoio para a Decisão , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa