Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nano Lett ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874568

RESUMO

Blood-contacting medical devices (BCDs) require antithrombotic, antibacterial, and low-friction surfaces. Incorporating a nanostructured surface with the functional hydrogel onto BCD surfaces can enhance the performances; however, their fabrication remains challenging. Here, we introduce a straightforward method to fabricate a multifunctional hydrogel-based nanostructure on BCD surfaces using O-carboxymethyl chitosan-based short nanofibers (CMC-SNFs). CMC-SNFs, fabricated via electrospinning and cutting processes, are easily sprayed and entangled onto the BCD surface. The deposited CMC-SNFs form a robust nanoweb layer via fusion at the contact area of the nanofiber interfaces. The superhydrophilic CMS-SNF nanoweb surface creates a water-bound layer that effectively prevents the nonspecific adhesion of bacteria and blood cells, thereby enhancing both antimicrobial and antithrombotic performances. Furthermore, the CMC-SNF nanoweb exhibits excellent lubricity and durability on the bovine aorta. The demonstration results of the CMC-SNF coating on catheters and sheaths provide evidence of its capability to apply multifunctional surfaces simply for diverse BCDs.

2.
Nano Lett ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.

3.
Small ; 20(14): e2306324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990401

RESUMO

Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen-laden droplets are highly sought. In this study, petal-like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation-induced self-assembly of octadecylamine, silica-alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible-light-activated antimicrobial and superhydrophobic-based antifouling activities. PNS-coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen-laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Equipamento de Proteção Individual , Pessoal de Saúde , Anti-Infecciosos/farmacologia
4.
Environ Res ; 238(Pt 1): 117159, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722581

RESUMO

This study evaluated the photobiocidal performance of four widely distributed visible-light-activated (VLA) dyes against two bacteria (Staphylococcus epidermidis and Escherichia coli) and two bacteriophages (phages MS2 and phi 6): rose bengal (RB), crystal violet, methylene blue, and toluidine blue O (TBO). The photobiocidal performance of each dye depended on the relationship between the type of dye and microorganism. Gram-negative E. coli and the non-enveloped structure of phage MS2 showed more resistance to the photobiocidal reaction than Gram-positive S. epidermidis and the enveloped structure of phage phi 6. RB had the highest potential to yield reactive oxygen species. However, the photobiocidal performance of RB was dependent on the magnitude of the surface charge of the microorganisms; for example, anionic RB induced a negative surface charge and thus electrical repulsion. On the other hand, the photobiocidal performance of TBO was observed to be less affected by the microorganism type. The comparative results presented in our study have significant implications for selecting photodynamic antimicrobial chemotherapy (PACT) dyes suitable for specific situations and purposes. Furthermore, they contribute to the advancement of PACT-related technologies by enhancing their applicability and scalability.


Assuntos
Anti-Infecciosos , Cloreto de Tolônio , Cloreto de Tolônio/química , Cloreto de Tolônio/farmacologia , Azul de Metileno/química , Rosa Bengala/química , Violeta Genciana , Fármacos Fotossensibilizantes/química , Escherichia coli , Corantes
5.
Chem Eng J ; 440: 135830, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313452

RESUMO

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.

6.
Nano Lett ; 21(2): 1017-1024, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33444028

RESUMO

Bioaerosols, including infectious diseases such as COVID-19, are a continuous threat to global public safety. Despite their importance, the development of a practical, real-time means of monitoring bioaerosols has remained elusive. Here, we present a novel, simple, and highly efficient means of obtaining enriched bioaerosol samples. Aerosols are collected into a thin and stable liquid film by the unique interaction of a superhydrophilic surface and a continuous two-phase centrifugal flow. We demonstrate that this method can provide a concentration enhancement ratio of ∼2.4 × 106 with a collection efficiency of ∼99.9% and an aerosol-into-liquid transfer rate of ∼95.9% at 500 nm particle size (smaller than a single bacterium). This transfer is effective in both laboratory and external ambient environments. The system has a low limit of detection of <50 CFU/m3air using a straightforward bioluminescence-based technique and shows significant potential for air monitoring in occupational and public-health applications.


Assuntos
Aerossóis , Bactérias/isolamento & purificação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Microbiologia do Ar , Biomassa , Limite de Detecção , Luminescência , Nanopartículas , Tamanho da Partícula , Saúde Pública , Propriedades de Superfície , Temperatura
7.
Nano Lett ; 21(4): 1576-1583, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33275432

RESUMO

Recently, bioaerosols, including the 2019 novel coronavirus, pose a serious threat to global public health. Herein, we introduce a visible-light-activated (VLA) antimicrobial air filter functionalized with titanium dioxide (TiO2)-crystal violet (CV) nanocomposites facilitating abandoned visible light from sunlight or indoor lights. The TiO2-CV based VLA antimicrobial air filters exhibit a potent inactivation rate of ∼99.98% and filtration efficiency of ∼99.9% against various bioaerosols. Under visible-light, the CV is involved in overall inactivation by inducing reactive oxygen species production both directly (CV itself) and indirectly (in combination with TiO2). Moreover, the susceptibility of the CV to humidity was significantly improved by forming a hydrophobic molecular layer on the TiO2 surface, highlighting its potential applicability in real environments such as exhaled or humid air. We believe this work can open a new avenue for designing and realizing practical antimicrobial technology using ubiquitous visible-light energy against the threat of infectious bioaerosols.


Assuntos
Microbiologia do Ar , Anti-Infecciosos Locais/química , Desinfecção/métodos , Violeta Genciana/química , Nanocompostos/química , Titânio/química , Anti-Infecciosos Locais/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Infecções Bacterianas/prevenção & controle , COVID-19/prevenção & controle , Desinfecção/instrumentação , Filtração/instrumentação , Filtração/métodos , Violeta Genciana/farmacologia , Humanos , Luz , Nanocompostos/ultraestrutura , Titânio/farmacologia , Água/química
8.
Indoor Air ; 31(4): 1134-1143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33682971

RESUMO

After the WHO designated COVID-19 a global pandemic, face masks have become a precious commodity worldwide. However, uncertainty remains around several details regarding face masks, including the potential for transmission of bioaerosols depending on the type of mask and secondary spread by face masks. Thus, understanding the interplay between face mask structure and harmful bioaerosols is essential for protecting public health. Here, we evaluated the microbial survival rate at each layer of commercial of filtering facepiece respirators (FFRs) and surgical masks (SMs) using bacterial bioaerosols. The penetration efficiency of bacterial particles for FFRs was lower than that for SMs; however, the microbial survival rate for all tested masks was >13%, regardless of filtration performance. Most bacterial particles survived in the filter layer (44%-77%) (e.g., the core filtering layer); the outer layer also exhibited significant survival rates (18%-29%). Most notably, survival rates were determined for the inner layers (<1% for FFRs, 3%-16% for SMs), which are in contact with the respiratory tract. Our comparisons of the permeability and survival rate of bioaerosols in each layer will contribute to bioaerosol-face mask research, while also providing information to facilitate the establishment of a mask-reuse protocol.


Assuntos
Máscaras/estatística & dados numéricos , Aerossóis , Microbiologia do Ar , COVID-19 , Filtração , Humanos , Staphylococcus epidermidis
9.
J Environ Sci (China) ; 103: 148-156, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743897

RESUMO

Indoor air quality (IAQ) directly affects the health of occupants. Household manufacturing equipment (HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we evaluated the characteristics of particulate and gaseous pollutants produced by a household laser processing equipment (HLPE). Various target materials were tested using a commercial HLPE under various operating conditions of laser power and sheath air flow rate. The mode diameters of the emitted particles gradually decreased as laser power increased, while the particle number concentration (PNC) and particle emission rate (PER) increased. In addition, as the sheath air flow rate quadrupled from 10 to 40 L/min, the mode diameter of the emitted particles decreased by nearly 25%, but the effect on the PNC was insignificant. When the laser induced the target materials at 53 mW, the mode diameters of particles were <150 nm, and PNCs were >2.0 × 104 particles/cm3. Particularly, analyses of sampled aerosols indicated that harmful substances such as sulfur and barium were present in particles emitted from leather. The carcinogenic gaseous pollutants such as acrylonitrile, acetaldehyde, 1,3-butadiene, benzene, and C8 aromatics (ethylbenzene) were emitted from all target materials. In an actual indoor environment, the PNC of inhalable ultrafine particles (UFPs) was >5 × 104 particles/cm3 during 30 min of HLPE operation. Our results suggest that more meticulous control methods are needed, including the use of less harmful target materials along with filters or adsorbents that prevent emission of pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Gases , Lasers , Tamanho da Partícula , Material Particulado/análise
10.
Sens Actuators B Chem ; 284: 525-533, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32288254

RESUMO

We present a novel bioaerosol sampling system based on a wet-cyclone for real-time and continuous monitoring of airborne microorganisms. The Automated and Real-time Bioaerosol Sampler based on Wet-cyclone (ARBSW) continuously collects bioaerosols in a liquid medium and delivers the samples to a sensing device using a wireless remote control system. Based on a high air-to-liquid-flow-rate ratio (∼ 1.4 × 105) and a stable liquid thin film within a wet-cyclone, the system achieved excellent sampling performance as indicated by the high concentration and viability of bioaerosols (> 95% collection efficiency for > 0.5-µm-diameter particles, > 95% biological collection efficiency for Staphylococcus epidermidis and Micrococcus luteus). Furthermore, the continuous and real-time sampling performance of the ARBSW system under test-bed conditions and during a field test demonstrated that the ARBSW is capable of continuously monitoring bioaerosols in real time with high sensitivity. Therefore, the ARBSW shows promise for continuous real-time monitoring of bioaerosols and will facilitate the management of bioaerosol-related health and environmental issues.

11.
Environ Sci Technol ; 51(20): 11967-11975, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28945076

RESUMO

Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe3O4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.


Assuntos
Filtros de Ar , Nanopartículas de Magnetita , Filtração , Nanofibras , Tamanho da Partícula
12.
J Nanosci Nanotechnol ; 16(5): 4487-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483779

RESUMO

Health-care products are a dominant application of various nanotechnologies. Silver nanoparticles are widely used in commercial products requiring antimicrobial activity. Due to the limitations of wet processing in nanotechnology applications, dry aerosol processes have been developed for indoor antimicrobial air filtration. In this work, various aerosol processes for the synthesis or generation of nanomaterials, natural-product nanoparticles, and hybrid nanoparticles are reviewed. Key aerosol processes and the morphologies of various antimicrobial nanoparticles generated using a variety of systems or deposited on filter fibers are introduced.


Assuntos
Aerossóis/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/síntese química , Nanopartículas Metálicas/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Ar Condicionado/métodos , Microbiologia do Ar , Sobrevivência Celular/efeitos dos fármacos , Cristalização/métodos , Teste de Materiais , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Prata/administração & dosagem , Staphylococcus aureus/fisiologia , Ultrafiltração/métodos
13.
J Aerosol Sci ; 86: 44-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32226126

RESUMO

Controlling airborne microorganisms has become increasingly important with increase in human indoor activities, epidemic disease outbreaks, and airborne pathogen transmission. Treatments using antimicrobial nanoparticles have shown promise because of the high surface-to-volume ratio of nanoparticles compared to their bulk counterparts, and their unique physical and chemical properties. In this study, hybrid nanostructures of multi-walled carbon nanotubes (MWCNTs) coated with antimicrobial, natural product (NP) nanoparticles were synthesized using a twin-head electrospray system (THES). The coated nanoparticles were then used in antimicrobial air filters to increase their antimicrobial efficiency. Electrosprayed droplets were converted to NP nanoparticles and MWCNTs through ethanol evaporation. Oppositely charged NP nanoparticles and MWCNTs were coagulated via Coulombic collisions to form hybrid nanoparticles that were deposited continuously onto an air filter medium. The size distribution and composition of the hybrid NP/MWCNT particles were characterized using a wide-range particle spectrometer (WPS) and transmission electron microscope (TEM). The concentration of hybrid NP/MWCNT nanoparticles was lower than that of NP nanoparticles but higher than that of MWCNTs and showed a bimodal size distribution with peak diameters of 21.1 and 49 nm. TEM analyses confirmed that the NP nanoparticles were attached to the MWCNT surface with a density of ~4-9 particles/MWCNT. When deposited onto the filter medium, NP/MWCNT particles formed dendrites on the filter׳s fiber surface. The filtration efficiency and pressure drop of the NP/MWCNT-coated filters were higher than those of pristine, NP nanoparticles-coated or MWCNTs-coated filters. The hybrid filter also exhibited stronger antimicrobial activity than those of NP or MWCNT-coated filters at identical deposited volumes (1.1×10-2 cm3/cm2 filter). Ninety-five percent of the tested bacterial aerosols were inactivated on the NP/MWCNTs filter while only <70% were inactivated on NP- or MWCNT-coated filters.

14.
J Nanosci Nanotechnol ; 13(9): 6042-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205596

RESUMO

Cu(In,Ga)Se2 (CIGS) is a compound semiconductor and is one of the most attractive light-absorbing materials for use in thin film solar cells. Among the various approaches to prepare CIGS thin films, the powder process offers an extremely simple and materials-efficient method. Here, we report the mechano-chemical preparation of CIGS compound powders suitable for fabrication of CIGS films by a powder process. We found that the CIGS phase was formed from the elemental powders of Cu, In, and Se and liquid Ga using high energy milling process with a milling time as short as 40 min at 200 rpm due to a self-accelerating exothermic reaction. The morphology and size of the CIGS powders changed with a function of the milling speed (100-300 rpm), leading to an optimal condition of milling at 200 rpm for 120 min. We also found that it was difficult to obtain a monolithic phase of the CIGS powders without severe particle aggregation by mechano-chemical milling alone. Therefore, in combination with the milling, subsequent heat-treatment at 300 degrees C was performed, which successfully provided monolithic CIGS nanopowders suitable for powder process. When a thin film was fabricated from the monolithic CIGS nanopowders, a highly dense film with large crystalline grains was obtained. The CIGS film preserved its chemical composition of CuIn0.7Ga0.3Se2 after sintering as evidenced by Raman spectroscopy, EDS and SAED pattern of transmission electron microscopy. The film was also found suitable for a light absorbing layer of CIGS solar cells with its band gap energy of 1.14 eV evaluated by transmittance spectroscopy.

15.
Environ Technol Innov ; 30: 103124, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36987524

RESUMO

The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.

16.
Sci Total Environ ; 807(Pt 1): 150754, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619223

RESUMO

The role of air filters is becoming increasingly important due to the threat of air pollution to public health. Understanding the lifetime of air filters is essential for assessing air pollution exposure. However, the effects of common environmental chemicals on filter performance have not been explored. Air filters in ventilation systems and air purifiers are commonly exposed to cigarette smoke aerosols. Moreover, due to the coronavirus pandemic, people are more likely to be in close proximity with smokers while wearing face masks, such that their masks will be exposed to cigarette aerosols. In this study, we applied a stepwise approach to analyze the effects of cigarette smoke on the filtration performance of electret melt-blown filter media that are commonly used to create face masks. We found that cigarette aerosols dramatically reduced filtration efficiency, while standard test particles of a similar loading weight did not affect filtration efficiency. After loading up to 204 µg/cm2 of cigarette smoke on 100 cm2 of electret filter medium, the filtration efficiency of some filters decreased from 92.5% to 33.3% (-Δ59.2%). Interestingly, we founded no changes in pressure drop following cigarette smoke exposure despite the reduction in filtration efficiency, suggesting that cigarette smoke aerosols significantly impact the electrostatic charge properties of the filters. Our results indicate that the lifetime of commonly-used air filters may be much shorter than expected and that people may unknowingly be directly exposed to airborne pollutants.


Assuntos
Filtros de Ar , Ar Condicionado , Filtração , Humanos , Fumaça/efeitos adversos , Fumar
17.
Sci Total Environ ; 818: 151830, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34813805

RESUMO

Air pollution causes millions of deaths every year. The aerosols, especially airborne nanoparticles generated by combustion, have detrimental effect on health. To protect public health against harmful aerosols, efforts to develop effective air cleaning technology have continued over the past several decades. However, the aerosol generation method used in air cleaning performance tests still rely largely on the traditional methods such as burning cigarettes, paper, and incense. Since the traditional method is inaccurate and unsteady, a more precisely controlled aerosol generation method should be developed. Here, we present a simple and inexpensive aerosol generation method that can easily and consistently produce submicron aerosols through laser ablation. This device constitutes an integrated system with a high-quality mini laser for rapid aerosol generation and a two-axis moving stage for continuous aerosol generation. We demonstrate that the concentration of generated aerosols could be easily controlled by selecting the laser irradiation time and power, resulting in the generation of ~104 particles/cm3 within a few seconds. In addition, the shape and size of generated aerosols can be controlled by changing the target material. This submicron aerosol generation process can be stably maintained for up to 1 h using small-sized (3 cm × 8 cm) affordable and accessible materials, such as wood and leather, highlighting the advantages of this inexpensive and easy-to-use combustion airborne submicron particle generation method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Lasers , Tamanho da Partícula , Material Particulado/análise
18.
ACS Appl Mater Interfaces ; 14(47): 53285-53297, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395463

RESUMO

Healthcare-associated infections can occur and spread through direct contact with contaminated fomites in a hospital, such as mobile phones, tablets, computer keyboards, doorknobs, and other surfaces. Herein, this study shows a transparent, robust, and visible light-activated antibacterial surface based on hydrogen bonds between a transparent silica-alumina (Si-Al) sol-gel and a visible light-activated photosensitizer, such as crystal violet (CV). The study of the bonding mechanisms revealed that hydrogen bonding predominantly occurs between the N of CV and Al-OH. Apart from CV, Si-Al can be combined with a variety of dyes, highlighting its potential for wide application. The Si-Al@CV film selectively generates singlet oxygen using ambient visible light, triggering potent photochemical antibacterial performance against Gram-positive and Gram-negative bacteria. Additionally, the Si-Al@CV film is stable even after mechanical stability tests such as tape adhesion, scratch, bending, and water immersion. In vitro cytotoxicity tests using C2C12 myoblast cells showed that the Si-Al@CV film is a biocompatible material. This work suggests a new approach for designing a transparent and robust touchscreen surface with photochemical antibacterial capability against healthcare-associated infections.


Assuntos
Óxido de Alumínio , Infecção Hospitalar , Humanos , Dióxido de Silício/farmacologia , Ligação de Hidrogênio , Corantes , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cátions , Violeta Genciana/farmacologia , Sílica Gel
19.
Langmuir ; 27(16): 10256-64, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21751779

RESUMO

Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.


Assuntos
Aerossóis/química , Anti-Infecciosos/química , Filtração/métodos , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Staphylococcus epidermidis/efeitos dos fármacos
20.
Sci Total Environ ; 783: 147043, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088110

RESUMO

Reducing PM emissions from industrial sites has become increasingly important as the adverse health effects of particulate matter have been demonstrated by multiple epidemiological and toxicological studies. High-performance bag filters are often used for this purpose. We fabricated polytetrafluoroethylene (PTFE) nanoparticle (NP)-coated high-efficiency bag filters using air-assisted electrospraying (AAES) technology. AAES functionalized with a combination of airflow drag force and an applied electric field facilitates high-throughput without requiring additional purification or preparation process of a PTFE emulsion. PTFE NPs form a unique three-dimensional microporous structure on a foam-filter medium, enhancing mechanical filtration performance (diffusion and interception). Moreover, the surface hydrophobicity was significantly improved as the PTFE NPs covered the bag filter surface. These factors highlight the feasibility of large-scale implementation of PTFE NP-coated bag filters for reducing PM emissions from industrial sources.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa