Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 110(3): 531-547, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809767

RESUMO

Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.


Assuntos
Disautonomia Familiar , Doenças Neurodegenerativas , Degeneração Retiniana , Camundongos , Animais , Disautonomia Familiar/genética , Cinetina , Marcha Atáxica , Administração Oral
2.
Antimicrob Agents Chemother ; 60(12): 7060-7066, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620477

RESUMO

PTC725 is a small molecule NS4B-targeting inhibitor of hepatitis C virus (HCV) genotype (gt) 1 RNA replication that lacks activity against HCV gt2. We analyzed the Los Alamos HCV sequence database to predict susceptible/resistant HCV gt's according to the prevalence of known resistance-conferring amino acids in the NS4B protein. Our analysis predicted that HCV gt3 would be highly susceptible to the activity of PTC725. Indeed, PTC725 was shown to be active against a gt3 subgenomic replicon with a 50% effective concentration of ∼5 nM. De novo resistance selection identified mutations encoding amino acid substitutions mapping to the first predicted transmembrane region of NS4B, a finding consistent with results for PTC725 and other NS4B-targeting compounds against HCV gt1. This is the first report of the activity of an NS4B targeting compound against HCV gt3. In addition, we have identified previously unreported amino acid substitutions selected by PTC725 treatment which further demonstrate that these compounds target the NS4B first transmembrane region.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Indóis/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos , Linhagem Celular Tumoral , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Genoma Viral , Genótipo , Humanos , Mutação , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo
3.
Bioorg Med Chem Lett ; 26(2): 594-601, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26652483

RESUMO

A novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target. This novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides serves as a promising starting point for a pan-genotype HCV discovery program.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Humanos , Dados de Sequência Molecular , Mutação , Replicon/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
4.
Bioorg Med Chem Lett ; 25(4): 781-6, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25613678

RESUMO

A structure-activity relationship investigation of various 6-(azaindol-2-yl)pyridine-3-sulfonamides using the HCV replicon cell culture assay led to the identification of a potent series of 7-azaindoles that target the hepatitis C virus NS4B. Compound 2ac, identified via further optimization of the series, has excellent potency against the HCV 1b replicon with an EC50 of 2nM and a selectivity index of >5000 with respect to cellular GAPDH RNA. Compound 2ac also has excellent oral plasma exposure levels in rats, dogs and monkeys and has a favorable liver to plasma distribution profile in rats.


Assuntos
Hepacivirus/enzimologia , Piridinas/química , Piridinas/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/farmacologia , Cães , Hepacivirus/efeitos dos fármacos , Humanos , Macaca fascicularis , Ratos , Relação Estrutura-Atividade
5.
Antimicrob Agents Chemother ; 57(7): 3250-61, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23629699

RESUMO

While new direct-acting antiviral agents for the treatment of chronic hepatitis C virus (HCV) infection have been approved, there is a continued need for novel antiviral agents that act on new targets and can be used in combination with current therapies to enhance efficacy and to restrict the emergence of drug-resistant viral variants. To this end, we have identified a novel class of small molecules, exemplified by PTC725, that target the nonstructural protein 4B (NS4B). PTC725 inhibited HCV 1b (Con1) replicons with a 50% effective concentration (EC50) of 1.7 nM and an EC90 of 9.6 nM and demonstrated a >1,000-fold selectivity window with respect to cytotoxicity. The compounds were fully active against HCV replicon mutants that are resistant to inhibitors of NS3 protease and NS5B polymerase. Replicons selected for resistance to PTC725 harbored amino acid substitutions F98L/C and V105M in NS4B. Anti-replicon activity of PTC725 was additive to synergistic in combination with alpha interferon or with inhibitors of HCV protease and polymerase. Immunofluorescence microscopy demonstrated that neither the HCV inhibitors nor the F98C substitution altered the subcellular localization of NS4B or NS5A in replicon cells. Oral dosing of PTC725 showed a favorable pharmacokinetic profile with high liver and plasma exposure in mice and rats. Modeling of dosing regimens in humans indicates that a once-per-day or twice-per-day oral dosing regimen is feasible. Overall, the preclinical data support the development of PTC725 for use in the treatment of chronic HCV infection.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Indóis/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Substituição de Aminoácidos , Animais , Antivirais/farmacocinética , Linhagem Celular Tumoral , Farmacorresistência Viral/genética , Sinergismo Farmacológico , Humanos , Indóis/metabolismo , Indóis/farmacocinética , Interferon-alfa/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
6.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137690

RESUMO

Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4ß4 state in the presence of the ß subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Piridinas/farmacologia , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Animais , Nucleotídeos de Desoxiadenina/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Feminino , Gonorreia/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Neisseria gonorrhoeae/efeitos dos fármacos
7.
Nucleic Acids Res ; 36(7): 2338-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18299285

RESUMO

U1 interference (U1i) is a novel method to block gene expression. U1i requires expression of a 5'-end-mutated U1 snRNA designed to base pair to the 3'-terminal exon of the target gene's pre-mRNA that leads to inhibition of polyadenylation. Here, we show U1i is robust (> or =95%) and a 10-nt target length is sufficient for good silencing. Surprisingly, longer U1 snRNAs, which could increase annealing to the target, fail to improve silencing. Extensive mutagenesis of the 10-bp U1 snRNA:target duplex shows that any single mismatch different from GU at positions 3-8, destroys silencing. However, mismatches within the other positions give partial silencing, suggesting that off-target inhibition could occur. The specificity of U1i may be enhanced, however, by the fact that silencing is impaired by RNA secondary structure or by splicing factors binding nearby, the latter mediated by Arginine-Serine (RS) domains. U1i inhibition can be reconstituted in vivo by tethering of RS domains of U1-70K and U2AF65. These results help to: (i) define good target sites for U1i; (ii) identify and understand natural cellular examples of U1i; (iii) clarify the contribution of hydrogen bonding to U1i and to U1 snRNP binding to 5' splice sites and (iv) understand the mechanism of U1i.


Assuntos
Interferência de RNA , Precursores de RNA/química , RNA Mensageiro/química , RNA Nuclear Pequeno/química , Pareamento Incorreto de Bases , Sítios de Ligação , Células HeLa , Humanos , Ligação de Hidrogênio , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Mutação Puntual , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Sequências Reguladoras de Ácido Ribonucleico , Fatores de Processamento de Serina-Arginina
8.
J Med Chem ; 57(5): 2121-35, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24266880

RESUMO

A novel, potent, and orally bioavailable inhibitor of hepatitis C RNA replication targeting NS4B, compound 4t (PTC725), has been identified through chemical optimization of the 6-(indol-2-yl)pyridine-3-sulfonamide 2 to improve DMPK and safety properties. The focus of the SAR investigations has been to identify the optimal combination of substituents at the indole N-1, C-5, and C-6 positions and the sulfonamide group to limit the potential for in vivo oxidative metabolism and to achieve an acceptable pharmacokinetic profile. Compound 4t has excellent potency against the HCV 1b replicon, with an EC50 = 2 nM and a selectivity index of >5000 with respect to cellular GAPDH. Compound 4t has an overall favorable pharmacokinetic profile with oral bioavailability values of 62%, 78%, and 18% in rats, dogs, and monkeys, respectively, as well as favorable tissue distribution properties with a liver to plasma exposure ratio of 25 in rats.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Sulfonamidas/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Cães , Haplorrinos , Humanos , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética
9.
Proc Natl Acad Sci U S A ; 100(14): 8264-9, 2003 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12826613

RESUMO

Reducing or eliminating expression of a given gene is likely to require multiple methods to ensure coverage of all of the genes in a given mammalian cell. We and others [Furth, P. A., Choe, W. T., Rex, J. H., Byrne, J. C., and Baker, C. C. (1994) Mol. Cell. Biol. 14, 5278-5289] have previously shown that U1 small nuclear (sn) RNA, both natural or with 5' end mutations, can specifically inhibit reporter gene expression in mammalian cells. This inhibition occurs when the U1 snRNA 5' end base pairs near the polyadenylation signal of the reporter gene's pre-mRNA. This base pairing inhibits poly(A) tail addition, a key, nearly universal step in mRNA biosynthesis, resulting in degradation of the mRNA. Here we demonstrate that expression of endogenous mammalian genes can be efficiently inhibited by transiently or stably expressed 5' end-mutated U1 snRNA. Also, we determine the inhibitory mechanism and establish a set of rules to use this technique and to improve the efficiency of inhibition. Two U1 snRNAs base paired to a single pre-mRNA act synergistically, resulting in up to 700-fold inhibition of the expression of specific reporter genes and 25-fold inhibition of endogenous genes. Surprisingly, distance from the U1 snRNA binding site to the poly(A) signal is not critical for inhibition, instead the U1 snRNA must be targeted to the terminal exon of the pre-mRNA. This could reflect a disruption by the 5' end-mutated U1 snRNA of the definition of the terminal exon as described by the exon definition model.


Assuntos
Precursores de RNA/antagonistas & inibidores , RNA Nuclear Pequeno/farmacologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Pareamento de Bases , Sítios de Ligação , Sinergismo Farmacológico , Elementos Facilitadores Genéticos , Fibroblastos/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Íntrons/genética , Luciferases/genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Poli A/metabolismo , Regiões Promotoras Genéticas , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Splicing de RNA , RNA Nuclear Pequeno/genética , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa