Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 51(1): 84-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113523

RESUMO

INTRODUCTION: Low-intensity endurance training (ET) performed with blood flow restriction (BFR) can improve muscle strength, cross-sectional area (CSA) and cardiorespiratory capacity. Whether muscle strength and CSA as well as cardiorespiratory capacity (i.e., V˙O2max) and underlying molecular processes regulating such respective muscle adaptations are comparable to resistance and ET is unknown. PURPOSE: To determine the respective chronic (i.e., 8 wk) functional, morphological, and molecular responses of ET-BFR training compared with conventional, unrestricted resistance training (RT) and ET. METHODS: Thirty healthy young men were randomly assigned to one of three experimental groups: ET-BFR (n = 10, 4 d·wk, 30-min cycling at 40% of V˙O2max), RT (n = 10, 4 d·wk, 4 sets of 10 repetitions leg press at 70% of one repetition maximum with 60 s rest) or ET (n = 10, 4 d·wk, 30-min cycling at 70% of V˙O2max) for 8 wk. Measures of quadriceps CSA, leg press one repetition maximum, and V˙O2max as well as muscle biopsies were obtained before and after intervention. RESULTS: Both RT and ET-BFR increased muscle strength and hypertrophy responses. ET-BFR also increased V˙O2max, total cytochrome c oxidase subunit 4 isoform 1 abundance and vascular endothelial growth factor mRNA abundance despite the lower work load compared to ET. CONCLUSIONS: Eight weeks of ET-BFR can increase muscle strength and induce similar muscle hypertrophy responses to RT while V˙O2max responses also increased postintervention even with a significantly lower work load compared with ET. Our findings provide new insight to some of the molecular mechanisms mediating adaptation responses with ET-BFR and the potential for this training protocol to improve muscle and cardiorespiratory capacity.


Assuntos
Ciclismo/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Força Muscular/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/irrigação sanguínea , Fluxo Sanguíneo Regional , Treinamento Resistido/métodos , Adaptação Fisiológica , Biópsia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Consumo de Oxigênio , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , RNA Mensageiro/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
PLoS One ; 13(3): e0194776, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596452

RESUMO

PURPOSE: We investigated the energy system contributions and total energy expenditure during low intensity endurance exercise associated with blood flow restriction (LIE-BFR) and without blood flow restriction (LIE). METHODS: Twelve males participated in a contra-balanced, cross-over design in which subjects completed a bout of low-intensity endurance exercise (30min cycling at 40% of [Formula: see text]) with or without BFR, separated by at least 72 hours of recovery. Blood lactate accumulation and oxygen uptake during and after exercise were used to estimate the anaerobic lactic metabolism, aerobic metabolism, and anaerobic alactic metabolism contributions, respectively. RESULTS: There were significant increases in the anaerobic lactic metabolism (P = 0.008), aerobic metabolism (P = 0.020), and total energy expenditure (P = 0.008) in the LIE-BFR. No significant differences between conditions for the anaerobic alactic metabolism were found (P = 0.582). Plasma lactate concentration was significantly higher in the LIE-BFR at 15min and peak post-exercise (all P≤0.008). Heart rate was significantly higher in the LIE-BFR at 10, 15, 20, 25, and 30min during exercise, and 5, 10, and 15min after exercise (all P≤0.03). Ventilation was significantly higher in the LIE-BFR at 10, 15, and 20min during exercise (all P≤0.003). CONCLUSION: Low-intensity endurance exercise performed with blood flow restriction increases the anaerobic lactic and aerobic metabolisms, total energy expenditure, and cardiorespiratory responses.


Assuntos
Circulação Sanguínea , Exercício Físico , Ácido Láctico/metabolismo , Consumo de Oxigênio , Adolescente , Adulto , Anaerobiose , Feminino , Humanos , Ácido Láctico/sangue , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa