Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biochemistry ; 61(20): 2229-2240, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197914

RESUMO

α-Carboxyketose synthases, including 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase (DAHPS), are long-standing targets for inhibition. They are challenging targets to create tight-binding inhibitors against, and inhibitors often display half-of-sites binding and partial inhibition. Half-of-sites inhibition demonstrates the existence of inter-subunit communication in DAHPS. We used X-ray crystallography and spatially resolved hydrogen-deuterium exchange (HDX) to reveal the structural and dynamic bases for inter-subunit communication in Escherichia coli DAHPS(Phe), the isozyme that is feedback-inhibited by phenylalanine. Crystal structures of this homotetrameric (dimer-of-dimers) enzyme are invariant over 91% of its sequence. Three variable loops make up 8% of the sequence and are all involved in inter-subunit contacts across the tight-dimer interface. The structures have pseudo-twofold symmetry indicative of inter-subunit communication across the loose-dimer interface, with the diagonal subunits B and C always having the same conformation as each other, while subunits A and D are variable. Spatially resolved HDX reveals contrasting responses to ligand binding, which, in turn, affect binding of the second substrate, erythrose-4-phosphate (E4P). The N-terminal peptide, M1-E12, and the active site loop that binds E4P, F95-K105, are key parts of the communication network. Inter-subunit communication appears to have a catalytic role in all α-carboxyketose synthase families and a regulatory role in some members.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , Isoenzimas , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Sítios de Ligação , Catálise , Comunicação , Cristalografia por Raios X , Deutério , Escherichia coli , Humanos , Isoenzimas/metabolismo , Ligantes , Fenilalanina/metabolismo , Fosfatos
2.
Nucleic Acids Res ; 47(20): 10830-10841, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31602462

RESUMO

Identifying and validating intermolecular covariation between proteins and their DNA-binding sites can provide insights into mechanisms that regulate selectivity and starting points for engineering new specificity. LAGLIDADG homing endonucleases (meganucleases) can be engineered to bind non-native target sites for gene-editing applications, but not all redesigns successfully reprogram specificity. To gain a global overview of residues that influence meganuclease specificity, we used information theory to identify protein-DNA covariation. Directed evolution experiments of one predicted pair, 227/+3, revealed variants with surprising shifts in I-OnuI substrate preference at the central 4 bases where cleavage occurs. Structural studies showed significant remodeling distant from the covarying position, including restructuring of an inter-hairpin loop, DNA distortions near the scissile phosphates, and new base-specific contacts. Our findings are consistent with a model whereby the functional impacts of covariation can be indirectly propagated to neighboring residues outside of direct contact range, allowing meganucleases to adapt to target site variation and indirectly expand the sequence space accessible for cleavage. We suggest that some engineered meganucleases may have unexpected cleavage profiles that were not rationally incorporated during the design process.


Assuntos
DNA/metabolismo , Endonucleases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA/química , Endonucleases/química , Evolução Molecular , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Especificidade por Substrato
3.
Nucleic Acids Res ; 46(17): 9057-9066, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30165656

RESUMO

DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5' to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.


Assuntos
Reparo do DNA , DNA de Cadeia Simples/química , Exodesoxirribonucleases/genética , Oligonucleotídeos/química , Pareamento de Bases , Sequência de Bases , Benzodiazepinonas/química , Benzodiazepinonas/farmacologia , Proteínas de Ciclo Celular , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligonucleotídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Pirróis/química , Pirróis/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 46(22): 11990-12007, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357419

RESUMO

LAGLIDADG homing endonucleases (meganucleases) are site-specific mobile endonucleases that can be adapted for genome-editing applications. However, one problem when reprogramming meganucleases on non-native substrates is indirect readout of DNA shape and flexibility at the central 4 bases where cleavage occurs. To understand how the meganuclease active site regulates DNA cleavage, we used functional selections and deep sequencing to profile the fitness landscape of 1600 I-LtrI and I-OnuI active site variants individually challenged with 67 substrates with central 4 base substitutions. The wild-type active site was not optimal for cleavage on many substrates, including the native I-LtrI and I-OnuI targets. Novel combinations of active site residues not observed in known meganucleases supported activity on substrates poorly cleaved by the wild-type enzymes. Strikingly, combinations of E or D substitutions in the two metal-binding residues greatly influenced cleavage activity, and E184D variants had a broadened cleavage profile. Analyses of I-LtrI E184D and the wild-type proteins co-crystallized with the non-cognate AACC central 4 sequence revealed structural differences that correlated with kinetic constants for cleavage of individual DNA strands. Optimizing meganuclease active sites to enhance cleavage of non-native central 4 target sites is a straightforward addition to engineering workflows that will expand genome-editing applications.


Assuntos
DNA/química , Endonucleases/química , Engenharia de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Clivagem do DNA , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
5.
Biochemistry ; 58(41): 4236-4245, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31549502

RESUMO

NeuB is a bacterial sialic acid synthase used by neuroinvasive bacteria to synthesize N-acetylneuraminate (NeuNAc), helping them to evade the host immune system. NeuNAc oxime is a potent slow-binding NeuB inhibitor. It dissociated too slowly to be detected experimentally, with initial estimates of its residence time in the active site being >47 days. This is longer than the lifetime of a typical bacterial cell, meaning that inhibition is effectively irreversible. Inhibition data fitted well to a model that included a pre-equilibration step with a Ki of 36 µM, followed by effectively irreversible conversion to an E*·I complex, with a k2 of 5.6 × 10-5 s-1. Thus, the inhibitor can subvert ligand release and achieve extraordinary residence times in spite of a relatively modest initial dissociation constant. The crystal structure showed the oxime functional group occupying the phosphate-binding site normally occupied by the substrate PEP and the tetrahedral intermediate. There was an ≈10% residual rate at high inhibitor concentrations regardless of how long NeuB and NeuNAc oxime were preincubated together. However, complete inhibition was achieved by incubating NeuNAc oxime with the actively catalyzing enzyme. This requirement for the enzyme to be actively turning over for the inhibitor to bind to the second subunit demonstrated an important role for intersubunit communication in the inhibitory mechanism.


Assuntos
Ácido N-Acetilneuramínico/química , Oximas/química , Oximas/farmacologia , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Aldeído Liases/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Vetores Genéticos , Cinética , Neisseria meningitidis/genética , Oximas/síntese química , Oxo-Ácido-Liases/isolamento & purificação , Ligação Proteica , Fatores de Tempo , Triose-Fosfato Isomerase/química
6.
Proc Natl Acad Sci U S A ; 113(16): 4308-13, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044084

RESUMO

Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.


Assuntos
Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deinococcus/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Deinococcus/genética
7.
J Bacteriol ; 198(16): 2263-74, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27297880

RESUMO

UNLABELLED: FimV is a Pseudomonas aeruginosa inner membrane protein that regulates intracellular cyclic AMP (cAMP) levels-and thus type IV pilus (T4P)-mediated twitching motility and type II secretion (T2S)-by activating the adenylate cyclase CyaB. Its cytoplasmic domain contains three predicted tetratricopeptide repeat (TPR) motifs separated by an unstructured region: two proximal to the inner membrane and one within the "FimV C-terminal domain," which is highly conserved across diverse homologs. Here, we present the crystal structure of the FimV C terminus, FimV861-919, containing a TPR motif decorated with solvent-exposed, charged side chains, plus a C-terminal capping helix. FimV689, a truncated form lacking this C-terminal motif, did not restore wild-type levels of twitching or surface piliation compared to the full-length protein. FimV689 failed to restore wild-type levels of the T4P motor ATPase PilU or T2S, suggesting that it was unable to activate cAMP synthesis. Bacterial two-hybrid analysis showed that TPR3 interacts directly with the CyaB activator, FimL. However, FimV689 failed to restore wild-type motility in a fimV mutant expressing a constitutively active CyaB (fimV cyaB-R456L), suggesting that the C-terminal motif is also involved in cAMP-independent functions of FimV. The data show that the highly conserved TPR-containing C-terminal domain of FimV is critical for its cAMP-dependent and -independent functions. IMPORTANCE: FimV is important for twitching motility and cAMP-dependent virulence gene expression in P. aeruginosa FimV homologs have been identified in several human pathogens, and their functions are not limited to T4P expression. The C terminus of FimV is remarkably conserved among otherwise very diverse family members, but its role is unknown. We provide here biological evidence for the importance of the C-terminal domain in both cAMP-dependent (through FimL) and -independent functions of FimV. We present X-ray crystal structures of the conserved C-terminal domain and identify a consensus sequence for the C-terminal TPR within the conserved domain. Our data extend our knowledge of FimV's functionally important domains, and the structures and consensus sequences provide a foundation for studies of FimV and its homologs.


Assuntos
Proteínas de Bactérias/metabolismo , Sequência Conservada/fisiologia , AMP Cíclico/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , AMP Cíclico/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Filogenia , Conformação Proteica , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo II
8.
Biochemistry ; 55(48): 6617-6629, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27933795

RESUMO

3-Deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyzes the first step in the shikimate pathway. It catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP. The kinetic mechanism was rapid equilibrium sequential ordered ter ter, with the essential divalent metal ion, Mn2+, binding first, followed by PEP and E4P. DAHP oxime, in which an oxime group replaces the keto oxygen, was a potent inhibitor, with Ki = 1.5 ± 0.4 µM, though with residual activity at high inhibitor concentrations. It displayed slow-binding inhibition with a residence time, tR, of 83 min. The crystal structure revealed that the oxime functional group, combined with two crystallographic waters, bound at the same location in the catalytic center as the phosphate group of the tetrahedral intermediate. DAHP synthase has a dimer-of-dimers homotetrameric structure, and DAHP oxime bound to only one subunit of each tight dimer. Inhibitor binding was competitive with respect to all three substrates in the subunits to which it bound. DAHP oxime did not overlap with the metal binding site, so the cause of their mutually exclusive binding was not clear. Similarly, there was no obvious structural reason for inhibitor binding in only two subunits; however, changes in global hydrogen/deuterium exchange showed large scale changes in protein dynamics upon inhibitor binding. The kcat value for the residual activity at high inhibitor concentrations was 3-fold lower, and the apparent KM,E4P value decreased at least 10-fold. This positive cooperativity of binding between DAHP oxime in subunits B and C, and E4P in subunits A and D appears to be the dominant cause for incomplete inhibition at high inhibitor concentrations. In spite of its lack of obvious structural similarity to phosphate, the oxime and crystallographic waters acted as a small, neutral phosphate mimic.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Oximas/farmacologia , Açúcares Ácidos/farmacologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Algoritmos , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Medição da Troca de Deutério , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Oximas/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Açúcares Ácidos/química
9.
J Biol Chem ; 290(1): 601-11, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25389296

RESUMO

Type IV pili (T4P) contain hundreds of major subunits, but minor subunits are also required for assembly and function. Here we show that Pseudomonas aeruginosa minor pilins prime pilus assembly and traffic the pilus-associated adhesin and anti-retraction protein, PilY1, to the cell surface. PilV, PilW, and PilX require PilY1 for inclusion in surface pili and vice versa, suggestive of complex formation. PilE requires PilVWXY1 for inclusion, suggesting that it binds a novel interface created by two or more components. FimU is incorporated independently of the others and is proposed to couple the putative minor pilin-PilY1 complex to the major subunit. The production of small amounts of T4P by a mutant lacking the minor pilin operon was traced to expression of minor pseudopilins from the P. aeruginosa type II secretion (T2S) system, showing that under retraction-deficient conditions, T2S minor subunits can prime T4P assembly. Deletion of all minor subunits abrogated pilus assembly. In a strain lacking the minor pseudopilins, PilVWXY1 and either FimU or PilE comprised the minimal set of components required for pilus assembly. Supporting functional conservation of T2S and T4P minor components, our 1.4 Å crystal structure of FimU revealed striking architectural similarity to its T2S ortholog GspH, despite minimal sequence identity. We propose that PilVWXY1 form a priming complex for assembly and that PilE and FimU together stably couple the complex to the major subunit. Trafficking of the anti-retraction factor PilY1 to the cell surface allows for production of pili of sufficient length to support adherence and motility.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Pseudomonas aeruginosa/química , Fatores de Virulência/química , Aderência Bacteriana , Sistemas de Secreção Bacterianos/genética , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Neisseria/química , Neisseria/metabolismo , Óperon , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Fatores de Virulência/metabolismo
10.
J Biol Chem ; 290(44): 26856-65, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26359492

RESUMO

Many bacterial pathogens, including Pseudomonas aeruginosa, use type IVa pili (T4aP) for attachment and twitching motility. T4aP are composed primarily of major pilin subunits, which are repeatedly assembled and disassembled to mediate function. A group of pilin-like proteins, the minor pilins FimU and PilVWXE, prime pilus assembly and are incorporated into the pilus. We showed previously that minor pilin PilE depends on the putative priming subcomplex PilVWX and the non-pilin protein PilY1 for incorporation into pili, and that with FimU, PilE may couple the priming subcomplex to the major pilin PilA, allowing for efficient pilus assembly. Here we provide further support for this model, showing interaction of PilE with other minor pilins and the major pilin. A 1.25 Å crystal structure of PilEΔ1-28 shows a typical type IV pilin fold, demonstrating how it may be incorporated into the pilus. Despite limited sequence identity, PilE is structurally similar to Neisseria meningitidis minor pilins PilXNm and PilVNm, recently suggested via characterization of mCherry fusions to modulate pilus assembly from within the periplasm. A P. aeruginosa PilE-mCherry fusion failed to complement twitching motility or piliation of a pilE mutant. However, in a retraction-deficient strain where surface piliation depends solely on PilE, the fusion construct restored some surface piliation. PilE-mCherry was present in sheared surface fractions, suggesting that it was incorporated into pili. Together, these data provide evidence that PilE, the sole P. aeruginosa equivalent of PilXNm and PilVNm, likely connects a priming subcomplex to the major pilin, promoting efficient assembly of T4aP.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Isoformas de Proteínas/química , Subunidades Proteicas/química , Pseudomonas aeruginosa/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Expressão Gênica , Genes Reporter , Teste de Complementação Genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Neisseria meningitidis/química , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Ligação Proteica , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Proteína Vermelha Fluorescente
11.
J Biol Chem ; 289(34): 23734-44, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25035427

RESUMO

A number of Gram-negative pathogens utilize type III secretion systems (T3SSs) to inject bacterial effector proteins into the host. An important component of T3SSs is a conserved ATPase that captures chaperone-effector complexes and energizes their dissociation to facilitate effector translocation. To date, there has been limited work characterizing the chaperone-T3SS ATPase interaction despite it being a fundamental aspect of T3SS function. In this study, we present the 2.1 Å resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN. Our structure revealed a local and functionally important novel feature in helix 10 that we used to define the interaction domain relevant to chaperone binding. We modeled the interaction between the multicargo chaperone, SrcA, and SsaN and validated this model using mutagenesis to identify the residues on both the chaperone and ATPase that mediate the interaction. Finally, we quantified the benefit of this molecular interaction on bacterial fitness in vivo using chromosomal exchange of wild-type ssaN with mutants that retain ATPase activity but no longer capture the chaperone. Our findings provide insight into chaperone recognition by T3SS ATPases and demonstrate the importance of the chaperone-T3SS ATPase interaction for the pathogenesis of Salmonella.


Assuntos
Adenosina Trifosfatases/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Sítios de Ligação , Cristalização , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Virulência
12.
Nucleic Acids Res ; 41(21): 9934-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975200

RESUMO

The ability of Deinococcus radiodurans to recover from extensive DNA damage is due in part to its ability to efficiently repair its genome, even following severe fragmentation by hundreds of double-strand breaks. The single-strand annealing pathway plays an important role early during the recovery process, making use of a protein, DdrB, shown to greatly stimulate ssDNA annealing. Here, we report the structure of DdrB bound to ssDNA to 2.3 Å. Pentameric DdrB was found to assemble into higher-order structures that coat ssDNA. To gain further mechanistic insight into the protein's function, a number of point mutants were generated altering both DNA binding and higher order oligomerization. This work not only identifies higher-order DdrB associations but also suggests the presence of an extended DNA binding surface running along the 'top' surface of a DdrB pentamer and continuing down between two individual subunits of the ring structure. Together this work sheds new insight into possible mechanisms for DdrB function in which higher-order assemblies of DdrB pentamers assist in the pairing of complementary ssDNA using an extended DNA binding surface.


Assuntos
Proteínas de Bactérias/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Deinococcus/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
13.
Proteins ; 82(2): 187-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23794378

RESUMO

Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high-throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4-Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI-MS/MS and determined the minimal inhibitory fragment of the XRCC4-interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix-loop-helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose-dependent response curves for the disruption of the complex by either helix 2 or helix-loop-helix fragments revealed that potency of inhibition was greater for the larger helix-loop-helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix-loop-helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/química , Proteínas de Ligação a DNA/química , Ligação Competitiva , DNA Ligase Dependente de ATP , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Chembiochem ; 15(16): 2411-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25233956

RESUMO

Disruption of calmodulin (CaM)-based protein interactions has been touted as a potential means for modulating several disease pathways. Among these is SOX9, which is a DNA binding protein that is involved in chrondrocyte differentiation and regulation of the hormones that control sexual development. In this work, we employed a "magnetic fishing"/mass spectrometry assay in conjunction with intrinsic fluorescence to examine the interaction of CaM with the CaM-binding domain of SOX9 (SOX-CAL), and to assess the modulation of this interaction by known anti-CaM compounds. Our data show that there is a high affinity interaction between CaM and SOX-CAL (27±9 nM), and that SOX-CAL bound to the same location as the well-known CaM antagonist melittin; unexpectedly, we also found that addition of CaM-binding small molecules initially produced increased SOX-CAL binding, indicative of binding to both the well-known high-affinity CaM binding site and a second, lower-affinity binding site.


Assuntos
Calmodulina/química , Fatores de Transcrição SOX9/química , Sítios de Ligação , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Magnetismo , Espectrometria de Massas , Meliteno/química , Meliteno/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Fatores de Transcrição SOX9/metabolismo , Espectrometria de Fluorescência
15.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598312

RESUMO

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cristalografia por Raios X , Sinergismo Farmacológico , Células Hep G2 , Modelos Moleculares , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Zinco/química
16.
BMC Biochem ; 14: 6, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23496873

RESUMO

BACKGROUND: Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. RESULTS: Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 µM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. CONCLUSIONS: Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact HCII, and that 1-75 binding to exosite 1 is GAG-dependent, our results support a model in which thrombin first binds to GAGs, followed by HCII addition to the ternary complex and release of HCII 1-75 for exosite 1 binding and serpin mechanism inhibition. They further suggest that, in isolated or transferred form, the entire HCII 1-75 region is required to ensure maximal binding of thrombin exosite 1.


Assuntos
Cofator II da Heparina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Escherichia coli/metabolismo , Cofator II da Heparina/química , Cofator II da Heparina/genética , Hirudinas/síntese química , Hirudinas/química , Hirudinas/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Serpinas/química , Serpinas/metabolismo , Trombina/química , Trombina/metabolismo
17.
PLoS Pathog ; 6(2): e1000751, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140193

RESUMO

Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.


Assuntos
Proteínas de Bactérias/química , Interações Hospedeiro-Parasita/fisiologia , Chaperonas Moleculares/química , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Salmonella enterica/genética , Homologia de Sequência de Aminoácidos
18.
Nucleic Acids Res ; 38(10): 3432-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20129942

RESUMO

Deinococcus spp. are renowned for their amazing ability to recover rapidly from severe genomic fragmentation as a result of exposure to extreme levels of ionizing radiation or desiccation. Despite having been originally characterized over 50 years ago, the mechanism underlying this remarkable repair process is still poorly understood. Here, we report the 2.8 A structure of DdrB, a single-stranded DNA (ssDNA) binding protein unique to Deinococcus spp. that is crucial for recovery following DNA damage. DdrB forms a pentameric ring capable of binding single-stranded but not double-stranded DNA. Unexpectedly, the crystal structure reveals that DdrB comprises a novel fold that is structurally and topologically distinct from all other single-stranded binding (SSB) proteins characterized to date. The need for a unique ssDNA binding function in response to severe damage, suggests a distinct role for DdrB which may encompass not only standard SSB protein function in protection of ssDNA, but also more specialized roles in protein recruitment or DNA architecture maintenance. Possible mechanisms of DdrB action in damage recovery are discussed.


Assuntos
Proteínas de Bactérias/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Deinococcus , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
19.
BMC Struct Biol ; 11: 11, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310079

RESUMO

BACKGROUND: PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similarity of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. RESULTS: In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. CONCLUSIONS: These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathways.


Assuntos
Proteínas Sanguíneas/química , Fosfatos de Inositol/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoproteínas/química , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isomerismo , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Transdução de Sinais
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1399-402, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102241

RESUMO

XRCC4 and XLF are key proteins in the repair of DNA double-strand breaks through nonhomologous end-joining. Together, they form a complex that stimulates the ligation of double-strand breaks. Owing to the suggested filamentous nature of this complex, structural studies via X-ray crystallography have proven difficult. Multiple truncations of the XLF and XRCC4 proteins were cocrystallized, but yielded low-resolution diffraction (~20 Å). However, a combination of microseeding, dehydration and heavy metals improved the diffraction of XRCC4(Δ157)-XLF(Δ224) crystals to 3.9 Å resolution. Although molecular replacement alone was unable to produce a solution, when combined with the anomalous signal from tantalum bromide clusters initial phasing was successfully obtained.


Assuntos
Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , Cristalização , Cristalografia por Raios X , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa