Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
New Phytol ; 242(3): 1018-1028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436203

RESUMO

Biodiversity world-wide has been under increasing anthropogenic pressure in the past century. The long-term response of biotic communities has been tackled primarily by focusing on species richness, community composition and functionality. Equally important are shifts between entire communities and habitat types, which remain an unexplored level of biodiversity change. We have resurveyed > 2000 vegetation plots in temperate forests in central Europe to capture changes over an average of five decades. The plots were assigned to eight broad forest habitat types using an algorithmic classification system. We analysed transitions between the habitat types and interpreted the trend in terms of changes in environmental conditions. We identified a directional shift along the combined gradients of canopy openness and soil nutrients. Nutrient-poor open-canopy forest habitats have declined strongly in favour of fertile closed-canopy habitats. However, the shift was not uniform across the whole gradients. We conclude that the shifts in habitat types represent a century-long successional trend with significant consequences for forest biodiversity. Open forest habitats should be urgently targeted for plant diversity restoration through the implementation of active management. The approach presented here can be applied to other habitat types and at different spatio-temporal scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Plantas , Biota
2.
Phys Rev Lett ; 132(4): 046201, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335341

RESUMO

Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, we apply a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which shows the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding mean-field-Hubbard modeling, we demonstrate that the dehydrogenation-induced Au-C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes.

3.
Chimia (Aarau) ; 78(10): 677-681, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39488755

RESUMO

Chemistry has a habit of surprising us. As we dig deeper, sometimes what we find will change the course of our research.

4.
Angew Chem Int Ed Engl ; 63(14): e202318254, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278766

RESUMO

Reactions of open-shell molecular graphene fragments are typically thought of as undesired decomposition processes because they lead to the loss of desired features like π-magnetism. Oxidative dimerization of phenalenyl to peropyrene shows, however, that these transformations hold promise as a synthetic tool for making complex structures via formation of multiple bonds and rings in a single step. Here, we explore the feasibility of using this "undesired" reaction of phenalenyl to build up strain and provide access to non-planar polycyclic aromatic hydrocarbons. To this end, we designed and synthesized a biradical system with two phenalenyl units linked via a biphenylene backbone. The design facilitates an intramolecular cascade reaction to a helically twisted saddle-shaped product, where the key transformations-ring-closure and ring-fusion-occur within one reaction. The negative curvature of the final peropyrene product, induced by the formed eight-membered ring, was confirmed by single-crystal X-ray diffraction analysis and the helical twist was validated via resolution of the product's enantiomers that display circularly polarized luminescence and high configurational stability.

5.
J Am Chem Soc ; 144(6): 2679-2684, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35120406

RESUMO

A simple abiological host-guest system demonstrates racemase activity with catalytic rate enhancements of 104 without employing traditional functional groups. Cooperative weak interactions enhanced through shape-complementarity between the catalyst active site and the reaction transition state drive this activity, as proposed by Pauling for enzymes. In analogy to the Jencks' concept of catalytic antibodies, it is shown that a hapten resembling the planar transition state of the bowl inversion acts as a potent inhibitor of this catalytic process. In contrast, no substrate/product inhibition is detected, and a relatively weak binding of the substrate is observed (Ka ≈ 102 M-1 at 293 K). This simple box-and-bowl system demonstrates that shape selectivity arising from cooperative dispersive forces suffices for the emergence of a catalytic system with an enzyme-like thermodynamic profile.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos de Piridínio/química , Catálise/efeitos dos fármacos , Fenantrolinas/química , Estereoisomerismo , Temperatura , Termodinâmica
6.
Angew Chem Int Ed Engl ; 60(24): 13529-13535, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33635576

RESUMO

The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.

7.
Angew Chem Int Ed Engl ; 60(24): 13521-13528, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645878

RESUMO

Nucleophilic addition of carbon-centered nucleophiles to nanographene ketones represents a valuable late-stage method for the functionalization of zigzag nanographenes, but its use is rare in the chemical literature. Using two model systems, non-Kekulé triangulene-4,8-dione and Kekulé anthanthrone, we identify unexpected regioselectivities and uncover the rules that govern these reactions. Considering the large number of nanographene ketones that have been reported since the pioneering work of Eric Clar, this method enables synthesis and exploration of hitherto unknown functionalized nanographenes.

8.
J Org Chem ; 85(1): 92-100, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31588756

RESUMO

How does edge modification affect spin distribution in open-shell graphene fragments? We investigated this effect by analyzing spin-delocalization in benzo[cd]-triangulene, a spin 1/2 graphene fragment composed of seven benzenoid rings fused in a hybrid zigzag/armchair fashion. Six rings of this system form the core of Clar's hydrocarbon triangulene, to which an additional ring is annulated in the zigzag region. The singly occupied molecular orbital (SOMO) of this hydrocarbon radical resembles both SOMOs of triangulene, but the spin density is distributed over the core in a nonuniform fashion. The uneven spin distribution is reflected in the reactivity-reaction with oxygen occurs selectively at a position with the highest spin density-and correlates nicely with relative stabilities of the corresponding Clar resonance structures. The spin distribution is different from that of a topologically similar compound composed of the same number of sp2 carbon atoms but featuring six rings only, illustrating the impact of subtle structural changes on spin-density distribution. This compound was characterized by means of UV-vis and electron paramagnetic resonance spectroscopy, cyclic voltammetry, mass spectrometry, and X-ray crystallography. The experimental results are supported by density functional theory calculations.

9.
Chimia (Aarau) ; 73(4): 313-316, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975263

RESUMO

The design and synthesis of molecular switches is of growing importance considering the steep increase in the production of consumer electronics in the recent years. The function of these devices is based on binary electronic circuits and can be achieved by use of bistable magnetic materials. This article reviews four types of molecular systems, which can be switched between two spin states in response to an external stimulus, illustrating working principles that can motivate the design of systems for practical applications. As an outlook, organic diradicaloid molecules are introduced as potential molecular magnetic switches that do not rely on the use of metals.

10.
J Am Chem Soc ; 140(34): 10839-10847, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30067898

RESUMO

We describe the synthesis and properties of 13,14-dimethylcethrene, a prototype of a chiral diradicaloid photochemical switch that can be transformed reversibly via conrotatory electrocyclization to its more stable closed form by light (630 nm) or heat and back to its open form by light (365 nm). This system illustrates how the chemical reactivity of a diradicaloid molecule can be translated into a switching function, which alters substantially all electronic parameters, namely, the HOMO-LUMO and the singlet-triplet (ST) energy gaps, and the degree of helical twist. As a result, distinct changes in the optical and chiroptical properties of this system were observed, which allowed us to monitor the switching process by a variety of spectroscopic techniques, including NMR, UV-vis, and CD. In comparison to the previously reported parent molecule cethrene, this system benefits from two methyl substituents installed in the fjord region, which account for the stability of the closed form against oxidation and racemization. The methyl substituents increase the ST energy gap of 13,14-dimethylcethrene by ∼4 kcal mol-1 in comparison to cethrene. Our DFT calculations reveal that the larger ST gap is a result of electronic and geometric effects of the methyl substituents and show the potential of related systems to act as magnetic switches at room temperature.

11.
J Org Chem ; 83(8): 4769-4774, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554426

RESUMO

We demonstrate that the electrocyclic (EC) ring-closure of cethrene in solution proceeds in a conrotatory mode both thermally and photochemically. The facile photochemical EC process promises that cethrene can serve as an efficient chiroptical switch operated solely by light. As for the thermally activated EC reaction, a low reaction barrier and a solvation effect on the EC rate indicate that the C2-symmetric pathway predicted by DFT calculations might not be the correct mechanism. Instead, we argue that the molecular symmetry decreases along the reaction coordinate as a consequence of the low-energy singlet excited state in this diradicaloid molecule, which might lead to a lower activation energy in accord with that determined through kinetic studies. Cethrene, therefore, represents a thought-provoking molecular chameleon of the Woodward-Hoffmann rules that puts our chemical concepts and intuition to test.

12.
Chem Soc Rev ; 46(6): 1643-1660, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28225107

RESUMO

Carbon allotropes constituted of sp2-hybridised carbon atoms display a variety of properties that arise from their delocalised π-conjugated electronic structure. Apart from carbon's planar allotropic form graphene, bent or curved structures, such as carbon nanotubes or fullerenes, respectively, have been discovered. In this Tutorial Review, we analyse and conceptually categorise chiral synthetic molecular fragments of non-planar sp2-carbon allotropes, including hypothetical forms of carbon that have been proposed to exist as stable entities. Two types of molecular systems composed of equally or differently sized rings are examined: bent with zero Gaussian curvature and curved with positive or negative Gaussian curvature. To affirm that a system is chiral, two conditions must be fulfilled: (1) both reflective symmetry elements, an inversion centre and a mirror plane, must be absent and (2) the system must be stereochemically rigid. It is therefore crucial to not only consider the symmetry of a given system as if it was a rigid object but also its structural dynamics. These principles serve as guidelines for the design of molecular fragments that encode and transcribe chirality into larger systems.

13.
Chimia (Aarau) ; 72(5): 322-327, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29789070

RESUMO

Molecules that contain one or more unpaired electrons delocalized within a π-conjugated backbone are promising candidates for applications in spin electronics or simply 'spintronics'. Our group develops functional organic materials based on π-conjugated hydrocarbon molecules, where the electrons are unpaired either in the ground state or in the excited state that is low in energy and can be populated thermally. We aim to learn how to introduce and control a multitude of properties, namely, optical, chiroptical, magnetic, and conductive, in a bulk material made of these molecules, by manipulating spin interactions between the unpaired electrons. The first model system that was developed in our group is a hydrocarbon named cethrene, which has a diradicaloid singlet ground state and a low-lying triplet excited state. In this article, the structural parameters and their impact on the properties and reactivity of cethrene are discussed within the realm of the three C's that symbolize cethrene's C-shape, chirality, and chameleonic reactivity.

14.
Acc Chem Res ; 49(2): 262-73, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26836816

RESUMO

Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic guests in different binding sites located within the same cavity. ExBox2(4+) forms complexes with C60 in which discrete arrays of aligned fullerenes result in single cocrystals, leading to improved material conductivities. When the substitution pattern of the Ex(n)Box(4+) series is changed to 1,3,5-trisubstituted benzenoid cores, the hexacationic cagelike compound, termed ExCage(6+), exhibits different kinetics of complexation with guests of varying sizes-a veritable playground for physical organic chemists. The organization of functionality with respect to structure becomes valuable as the number of analogues continues to grow. With each of these minor structural modifications, a wealth of properties emerge, begging the question as to what discoveries await and what properties will be realized with the continued exploration of this area of supramolecular chemistry based on a unique class of receptor molecules.

15.
Chem Soc Rev ; 45(6): 1542-56, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26765050

RESUMO

Helicity in a molecule arises when the molecule contains a stereogenic axis instead of a stereogenic centre. In a molecule that is not inherently helically chiral, helicity can be induced by designing the molecule such that an unfavourable steric interaction, or strain, is present in its planar conformation. The release of this strain forces the molecule to adopt a helical twist against the cost of the torsional strain induced in the backbone, an interplay of forces, which must be balanced in favour of the helical conformation over the planar one. In this tutorial review, design principles that govern this process are analysed and the selected examples are categorised into three main (I, II and III) and two related (IV and V) classes, simply by their relation to one of the three types of helically twisted ribbons or two types of helically twisted cyclic ribbons, respectively. The presented examples were selected such that they illustrate their category in the best possible way, as well as based on availability of their solid-state structures and racemisation energy barriers. Finally, the relationship between the structure and properties is discussed, highlighting the cases in which induced helicity gave rise to unprecedented phenomena.


Assuntos
Compostos Policíclicos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
16.
J Am Chem Soc ; 138(11): 3667-70, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26909445

RESUMO

A tetracationic pyridinium-based cyclophane with a box-like geometry, incorporating two juxtaposed alkyne functions, has been synthesized. The triple bonds are reactive through cycloadditions toward dienes and azides, promoted by the electron-withdrawing nature of the pyridinium rings, as well as by the strain inherent in the cyclophane. The cycloadditions proceeded in high yields, with the cyclophane reacting faster than its acyclic analogue. While the cyclophane contains two reactive triple bonds, there is no evidence for a stable monofunctional intermediate-only starting material and the difunctional product have been detected by (1)H NMR spectroscopy. Molecular modeling of the energy landscape reveals a lower barrier for the kinetically favored second cycloaddition compared with the first one. This situation results in tandem cascading reactions within rigid cyclophanes, where reactions at a first triple bond induce increased reactivity at a distal second alkyne.


Assuntos
Alcinos/química , Derivados de Benzeno/química , Compostos de Piridínio/química , Viologênios/química , Adamantano/química , Alcinos/síntese química , Azidas/química , Derivados de Benzeno/síntese química , Reação de Cicloadição , Ciclopentanos/química , Espectroscopia de Ressonância Magnética , Compostos de Piridínio/síntese química , Termodinâmica , Difração de Raios X
17.
J Am Chem Soc ; 138(10): 3371-81, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26928460

RESUMO

Two metal-organic framework materials, MFM-130 and MFM-131 (MFM = Manchester Framework Material), have been synthesized using two oligoparaxylene (OPX) tetracarboxylate linkers containing four and five aromatic rings, respectively. Both fof-type non-interpenetrated networks contain Kagomé lattice layers comprising [Cu2(COO)4] paddlewheel units and isophthalates, which are pillared by the OPX linkers. Desolvated MFM-130, MFM-130a, shows permanent porosity (BET surface area of 2173 m(2)/g, pore volume of 1.0 cm(3)/g), high H2 storage capacity at 77 K (5.3 wt% at 20 bar and 2.2 wt% at 1 bar), and a higher CH4 adsorption uptake (163 cm(3)(STP)/cm(3) (35 bar and 298 K)) compared with its structural analogue, NOTT-103. MFM-130a also shows impressive selective adsorption of C2H2, C2H4, and C2H6 over CH4 at room temperature, indicating its potential for separation of C2 hydrocarbons from CH4. The single-crystal structure of MFM-131 confirms that the methyl substituents of the paraxylene units block the windows in the Kagomé lattice layer of the framework, effectively inhibiting network interpenetration in MFM-131. This situation is to be contrasted with that of the doubly interpenetrated oligophenylene analogue, NOTT-104. Calculation of the mechanical properties of these two MOFs confirms and explains the instability of MFM-131 upon desolvation in contrast to the behavior of MFM-130. The incorporation of paraxylene units, therefore, provides an efficient method for preventing network interpenetration as well as accessing new functional materials with modified and selective sorption properties for gas substrates.

18.
J Org Chem ; 81(24): 12303-12317, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27809529

RESUMO

Neutral open-shell molecules, in which spin density is delocalized through a helical conjugated backbone, hold promise as models for investigating phenomena arising from the interplay of magnetism and chirality. Apart from a handful of examples, however, the chemistry of these compounds remains largely unexplored. Here, we examine the prospect of extending spin-delocalization over a helical backbone in a model compound naphtho[3,2,1-no]tetraphene, the first helically chiral open-shell hydrocarbon, in which one benzene ring is fused to [5]helicene, forming a phenalenyl subunit. The unpaired electron in this molecule is delocalized over the entire helical core composed of six rings, albeit in a nonuniform fashion, unlike in phenalenyl. In the case of a monosubstituted derivative, the uneven spin-distribution results in a selective σ-dimer formation in solution, as confirmed by 2D NMR spectroscopy. In contrast, the dimerization process is suppressed entirely when four substituents are installed to sterically hinder all reactive positions. The persistent nature of the tetrasubstituted derivative allowed its characterization by EPR, UV-vis, and CD spectroscopies, validating spin-delocalization through a chiral backbone, in accord with DFT calculations. The nonuniform spin-distribution, which dictates the selectivity of the σ-dimer formation, is rationalized by evaluating the aromaticity of the resonance structures that contribute to spin-delocalization.

19.
Angew Chem Int Ed Engl ; 55(3): 1183-6, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26593680

RESUMO

We report the synthesis and properties of "cethrene", the only helically chiral isomer of heptazethrene with a biradicaloid singlet ground state. Cethrene gives a well-resolved EPR spectrum at room temperature and its structure was confirmed by 2D NMR and absorption spectroscopies. Our experiments and calculations show that the helical twist affects its electronic properties and decreases the singlet-triplet energy gap when compared to that of planar heptazethrene. Cethrene undergoes an intramolecular cyclization within several hours at room temperature.

20.
J Am Chem Soc ; 137(6): 2392-9, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25581321

RESUMO

Although pristine C60 prefers to adopt a face-centered cubic packing arrangement in the solid state, it has been demonstrated that noncovalent-bonding interactions with a variety of molecular receptors lead to the complexation of C60 molecules, albeit usually with little or no control over their long-range order. Herein, an extended viologen-based cyclophane­ExBox2(4+)­has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions. These one-dimensional arrays of fullerenes stack along the long axis of needle-like single crystals as a consequence of multiple noncovalent-bonding interactions between each of the inclusion complexes. The electrical conductivity of these crystals is on the order of 10(-7) S cm(-1), even without any evacuation of oxygen, and matches the conductivity of high-quality, unfunctionalized C60-based materials that typically require stringent high-temperature vaporization techniques, along with the careful removal of oxygen and moisture, prior to measuring their conductance.


Assuntos
Fulerenos/química , Semicondutores , Cristalização , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa