Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 262(2): 161-174, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37929639

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Colágeno Tipo XVII , Penfigoide Bolhoso , Animais , Camundongos , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos não Fibrilares/genética , Camundongos Endogâmicos C57BL , Autoanticorpos , Imunoglobulina G
2.
Eur J Immunol ; 40(3): 710-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20017191

RESUMO

C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen-derived DC results in increased production of TGF-beta leading to de novo differentiation of Foxp3(+) Treg within 12 h after co-incubation with CD4(+) T cells from DO11.10/RAG2(-/-) mice. Stimulation of C5aR(-/-) DC with OVA and TLR2 ligand Pam(3)CSK(4) increased TGF-beta production and induced high levels of IL-6 and IL-23 but only minor amounts of IL-12 leading to differentiation of Th cells producing IL-17A and IL-21. Th17 differentiation was also found in vivo after adoptive transfer of CD4(+) Th cell into C5aR(-/-) mice immunized with OVA and Pam(3)CSK(4). The altered cytokine production of C5aR(-/-) DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17-cell differentiation through regulation of DC function.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Animais , Separação Celular , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor da Anafilatoxina C5a/deficiência , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
3.
Brain Behav Immun ; 25(7): 1416-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21539909

RESUMO

The sleep-wake cycle is characterized by complex interactions among the central nervous, the endocrine and the immune systems. Continuous 24-h wakefulness prevents sleep-associated hormone regulation resulting in impaired pro-inflammatory cytokine production. Importantly, cytokines and hormones also modulate the complement system, which in turn regulates several adaptive immune responses. However, it is unknown whether sleep affects the activation and the immunoregulatory properties of the complement system. Here, we determined whether the 24-h sleep-wake cycle has an impact on: (i) the levels of circulating complement factors; and (ii) TLR4-mediated IL-12 production from human IFN-γ primed monocytes in the presence or absence of C5a receptor signaling. For this purpose, we analyzed the blood and blood-derived monocytes of 13 healthy donors during a regular sleep-wake cycle in comparison to 24 h of continuous wakefulness. We found decreased plasma levels of C3 and C4 during nighttime hours that were not affected by sleep. In contrast, sleep was associated with increased complement activation as reflected by elevated C3a plasma levels during nighttime sleep. Sleep deprivation prevented such activation. At the cellular level, C5a negatively regulated TLR4-mediated IL-12p40 and p70 production from human monocytes. Importantly, this regulatory effect of C5a on IL-12p70 production was effective only during daytime hours. Thus, similar to hormones, some complement factors and immunoregulatory properties of C5a are influenced by sleep and the circadian rhythm. Our findings that continuous wakefulness has a negative impact on complement activation may provide a rationale for the immunosupportive functions of sleep.


Assuntos
Ritmo Circadiano/imunologia , Complemento C5a/imunologia , Privação do Sono/imunologia , Sono/imunologia , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Humanos , Masculino , Transdução de Sinais/imunologia , Adulto Jovem
4.
J Immunol ; 182(8): 5123-30, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342693

RESUMO

The role of complement in the development of maladaptive immunity in experimental allergic asthma is unclear. In this study, we show that C3a receptor (C3aR)-deficient mice are protected from the development of Th2 immunity in a model of house dust mite-induced asthma. C5a receptor (C5aR)-targeting of C3aR-deficient mice during allergen sensitization not only reversed the protective effect but enhanced Th2 cytokine production, airway inflammation, and airway responsiveness, suggesting that the reduced allergic phenotype in C3aR-deficient mice results from protective C5aR signaling. In support of this view, C5aR expression in C3aR-deficient pulmonary dendritic cells (DCs) was increased when compared with wild-type DCs. Moreover, C5aR targeting regulated the frequency of pulmonary plasmacytoid DCs expressing costimulatory molecules B7-H1 and B7-DC. Ex vivo targeting of B7-H1 and B7-DC increased Th2 cytokine production from T cells of wild-type but not of C5aR-targeted mice, suggesting a protective role for C5a through regulation of B7 molecule expression on plasmacytoid DCs.


Assuntos
Asma/imunologia , Antígeno B7-1/imunologia , Complemento C5a/imunologia , Células Dendríticas/imunologia , Glicoproteínas de Membrana/imunologia , Peptídeos/imunologia , Animais , Antígeno B7-H1 , Camundongos , Camundongos Endogâmicos BALB C , Proteína 2 Ligante de Morte Celular Programada 1 , Receptor da Anafilatoxina C5a/imunologia , Receptores de Complemento/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia
5.
J Invest Dermatol ; 141(2): 285-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32653301

RESUMO

The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.


Assuntos
Doenças Autoimunes/etiologia , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Imunoglobulina G/fisiologia , Dermatopatias/etiologia , Animais , Autoanticorpos/sangue , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Citocinas/análise , Glicosilação , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dermatopatias/genética , Dermatopatias/imunologia , Linfócitos T Reguladores/imunologia
6.
Curr Protoc Immunol ; 130(1): e100, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710701

RESUMO

The anaphylatoxins (AT) C3a and C5a are effector molecules of C3 and C5 exerting multiple biologic functions through binding and activation of their cognate G protein-coupled receptors. C3a interacts with the C3a receptor (C3aR), whereas C5a and its primary degradation product C5a-desArg engage C5aR1 and C5aR2. In the past, analysis of AT expression has been hampered by cross reaction of antibodies designed to recognize the different AT receptors. Furthermore, assessment of effects mediated by cell-specific activation has been difficult. Here, floxed AT receptor reporter mice are described as tools to monitor AT receptor expression in cells and tissues and to study the functions of C3a and C5a by cell-specific deletion of their cognate AT receptors. © 2020 The Authors. Basic Protocol 1: Genotyping of floxed GFP-C5aR1 knockin mice Support Protocol 1: Genotyping of LysMcre-C5ar1-/- mice Basic Protocol 2: Genotyping of floxed tdTomato-C3aR and -tdTomato-C5aR2 knockin mice Support Protocol 2: Preparation of genomic DNA Basic Protocol 3: Determination of C5aR1, C5aR2, and C3aR expression using floxed AT receptor reporter mice Support Protocol 3: Determination of C3aR expression using a C3aR-specific antibody Support Protocol 4: Determination of C5aR1, C5aR2, and C3aR mRNA expression in floxed GFP-C5aR1, floxed tdTomato-C5aR2 or -tdTomato C3aR positive cells Basic Protocol 4: Analysis of C5aR1-driven ERK1/2 phosphorylation in GFP-C5aR1+ cells Basic Protocol 5: Assessment of C3aR functions in cells obtained from floxed tdTomato-C3aR knockin mice- Determination of C3aR internalization Alternate Protocol: C3a-induced increase in intracellular Ca2+ Basic Protocol 6: C5aR2-driven IFN-γ production from NK cells Support Protocol 5: Isolation of splenic NK cells by FACS.


Assuntos
Complemento C3a/imunologia , Complemento C5a/imunologia , Expressão Gênica , Camundongos Transgênicos , Receptor da Anafilatoxina C5a/genética , Receptores Acoplados a Proteínas G/genética , Animais , Cálcio/metabolismo , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Genes Reporter , Loci Gênicos , Genótipo , Técnicas de Genotipagem , Humanos , Imunofenotipagem , Interferon gama , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Fosforilação , RNA Mensageiro/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Nat Med ; 18(9): 1401-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922409

RESUMO

Complement is an ancient danger-sensing system that contributes to host defense, immune surveillance and homeostasis. C5a and its G protein­coupled receptor mediate many of the proinflammatory properties of complement. Despite the key role of C5a in allergic asthma, autoimmune arthritis, sepsis and cancer, knowledge about its regulation is limited. Here we demonstrate that IgG1 immune complexes (ICs), the inhibitory IgG receptor FcγRIIB and the C-type lectin­like receptor dectin-1 suppress C5a receptor (C5aR) functions. IgG1 ICs promote the association of FcγRIIB with dectin-1, resulting in phosphorylation of Src homology 2 domain­containing inositol phosphatase (SHIP) downstream of FcγRIIB and spleen tyrosine kinase downstream of dectin-1. This pathway blocks C5aR-mediated ERK1/2 phosphorylation, C5a effector functions in vitro and C5a-dependent inflammatory responses in vivo, including peritonitis and skin blisters in experimental epidermolysis bullosa acquisita. Notably, high galactosylation of IgG N-glycans is crucial for this inhibitory property of IgG1 ICs, as it promotes the association between FcγRIIB and dectin-1. Thus, galactosylated IgG1 and FcγRIIB exert anti-inflammatory properties beyond their impact on activating FcγRs.


Assuntos
Doenças Autoimunes/imunologia , Complemento C5a/imunologia , Imunoglobulina G/imunologia , Lectinas Tipo C/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo , Análise de Variância , Animais , Anticorpos Monoclonais , Western Blotting , Cálcio/metabolismo , Adesão Celular/imunologia , Complemento C5a/administração & dosagem , Feminino , Inositol Polifosfato 5-Fosfatases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor da Anafilatoxina C5a , Receptores de IgG/genética , Receptores de IgG/imunologia , Ressonância de Plasmônio de Superfície , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa