Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 201(4): 1289-1303, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24206564

RESUMO

• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.


Assuntos
Sequestro de Carbono , Ecossistema , Árvores/crescimento & desenvolvimento , Madeira/metabolismo , Biomassa , Carbono/metabolismo , Europa (Continente) , Geografia , Estações do Ano
2.
J Environ Manage ; 127 Suppl: S168-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23582740

RESUMO

Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously developed, updated and used in different research projects and as a learning and knowledge-sharing tool for students. The main objective of LandCaRe DSS is to provide information on the complex long-term impacts of climate change and on potential management options for adaptation by answering "what-if" type questions.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Mudança Climática , Técnicas de Apoio para a Decisão , Sistemas de Informação Geográfica
3.
Int J Biometeorol ; 52(2): 139-47, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17503090

RESUMO

Introducing climate quotients for the growing season (Q(gs)) provides a way to quantify effects of climate trends with respect to Potential Natural Vegetation (PNV), especially beech forests (Fagus sylvatica L.) in Central Germany. What is crucial in this regard is the great influence of the dominant decrease in the amount of precipitation (up to 40% in the last 50 years) during the growing season versus the dormant season. However, precipitation during the dormant season (which is predominantly increasing: up to 40% in the last 50 years) is also important for replenishing the soil water supply. The Q(gs) values of the Climatic Normal period of 1971-2000 are generally higher (up to 12% in lowland areas) compared with the Climatic Normal period of 1961-1990, the extent of the difference being in general inversely proportional to elevation above sea level. What this means for the area under investigation is that humidity conditions, which generally improve as the elevation above sea level increases, have a positive effect on the site potential. However, a comparison of the climatologically important period of 1991-2003 with the period of 1961-1990 (area-wide increase between 12% and 16%) could not identify this positive effect of elevation on precipitation for the area under investigation. With regard to the recent climate-based trends of PNV, we have shown that all natural spatial units in Central Germany are affected by progressing continentality (i.e., dryness) during the growing season and the resulting deterioration of the site potential. The area of potential beech forest at lower elevation has decreased in favour of oak forest as PNV, while less change is observed in the montane area.


Assuntos
Aclimatação/fisiologia , Clima , Ecossistema , Meio Ambiente , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Simulação por Computador , Alemanha
4.
Sci Rep ; 4: 7483, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25500908

RESUMO

A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.


Assuntos
Carbono/metabolismo , Planeta Terra , Ecossistema , Abastecimento de Água , Água/metabolismo , Clima , Humanos
5.
Tree Physiol ; 18(1): 1-9, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12651293

RESUMO

Temporal changes in inorganic and organic sulfur compounds (sulfate, glutathione, cysteine, methionine) were analyzed in xylem sap of 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing on acidic soils at a healthy and a declining stand in the Fichtelgebirge (North Bavaria, Germany). Studies were carried out (1) to quantify glutathione (GSH) transport in the xylem of spruce, (2) to study the significance of reduced sulfur versus sulfate (SO(4) (2-)) transport in the xylem, and (3) to compare total sulfur (S) transport in the xylem with the amount of foliar uptake of SO(2) in an air-polluted environment. Glutathione was the main reduced S compound in the xylem ranging in concentration from 0.5 to 5 &mgr;mol l(-1). Concentrations of inorganic SO(4) (2-) in the xylem sap were up to 50 times higher than those of GSH ranging from 60 to 230 &mgr;mol l(-1). During the growing season, concentrations of all S compounds in the xylem were highest in May (up to 246 &mgr;mol l(-1)) and decreased during summer and fall (up to 21 &mgr;mol l(-1)). On average, SO(4) (2-) concentrations in xylem sap were 30% higher at the declining site compared with the healthy site. Diurnal changes in organic S compounds were significant for GSH and cysteine with high concentrations during the night and low concentrations during the day. Diurnal changes in inorganic concentrations were not significant. Xylem sap concentrations of SO(4) (2-) and cysteine were twice as high and GSH concentrations were tenfold higher in surface roots than in branches. At both sites, transport of organic S was low (up to 3% of total S) compared to transport of SO(4) (2-). Annual transport of total S in the xylem (SO(4) (2-) was the main component) ranged from 60 to 197 mmol tree(-1) year(-1) at the healthy site and from 123 to 239 mmol tree(-1) year(-1) at the declining site. Although gaseous uptake of SO(2) was estimated to be similar at both sites (38 mmol tree(-1) year(-1); Horn et al. 1989), the ratio between annual gaseous uptake of SO(2) and transport of S in the xylem was 1:4 and 1:5 at the healthy and declining sites, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa