Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Lett ; 161(3): 188-94, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16229978

RESUMO

The clinical use of the alkylating oxazaphosphorine ifosfamide is hampered by a potentially severe encephalopathy. S-carboxymethylcysteine (SCMC), a metabolite of ifosfamide (IF), activates the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor, causes neuronal acidification, and could thus be responsible for the encephalopathy. Since the presence of SCMC in brain has not been documented following administration of IF, SCMC was measured in the brain of mice following both the individual i.p. administration of IF and SCMC. SCMC was found in a concentration of 108.2 +/- 29.7 nmol/g following IF, but was detectable at much lower levels following the administration of SCMC (21.1 +/- 21.2 nmol/g). Together with the observation that the concentration of SCMC was 10-fold higher in liver than in brain 1h after administration of SCMC, these findings suggest that the SCMC found after IF was formed in the brain in situ. The concentration of glutamic acid was similar in IF and SCMC treated animals. Methylene blue, which is used clinically to treat and to prevent IF encephalopathy, did not decrease the formation of SCMC in brain. By inhibiting monoamine oxidase activity it did, however, markedly increase the concentration of serotonin in brain which could modulate the effects of SCMC on AMPA/kainate receptors. Thus, SCMC is present in brain following the administration of IF and could contribute to the IF-associated encephalopathy by activation of AMPA/kainate receptors.


Assuntos
Antineoplásicos Alquilantes/farmacocinética , Encefalopatias/metabolismo , Encéfalo/metabolismo , Carbocisteína/farmacocinética , Ifosfamida/farmacocinética , Animais , Antineoplásicos Alquilantes/toxicidade , Encéfalo/efeitos dos fármacos , Encefalopatias/induzido quimicamente , Carbocisteína/toxicidade , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Ácido Glutâmico/metabolismo , Ifosfamida/toxicidade , Azul de Metileno/farmacologia , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Serotonina/metabolismo
2.
Pharmacogenetics ; 13(6): 307-19, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12777961

RESUMO

The objective of this investigation was to screen for potential endogenous substrates for CYP2D6. Using recombinant CYP2D6, together with hepatic microsomes from CYP2D6-transgenic mice, human liver microsomes, and a specific anti-CYP2D6 monoclonal antibody, it was ascertained that CYP2D6 does not significantly metabolize the endogenous phenylethylamines 2-phenylethylamine, octopamine, synephrine, 3-methoxy-p-tyramine, 4-methoxy-m-tyramine, metanephrine, and normetanephrine, nor the indolethylamines tryptamine, serotonin, 6-methoxytryptamine, and melatonin, nor the beta-carbolines harman, norharman and tryptoline. However, the indolethylamines 5-methoxy-N,N-dimethyltryptamine (5-MDMT) and pinoline (6-methoxy-1,2,3,4-tetrahydro-beta-carboline) showed relatively high affinity for CYP2D6 in a spectral binding assay (K(s) 28 +/- 5, and 0.5 +/- 0.3 microm (mean +/- SEM), respectively) and were O-demethylated only by CYP2D6 in a panel of 15 recombinant common human P450s. Pinoline and 5-MDMT O-demethylase activities were 35- and 11-fold greater in liver microsomes from CYP2D6-humanized mice, respectively, than those in liver microsomes from control mice. Moreover, the increased activities were completely inhibited by an anti-CYP2D6 monoclonal antibody. Kinetic analysis with recombinant CYP2D6 gave K(m) and k(cat) values for 5-MDMT and pinoline O-demethylations of 12 +/- 1 microm and 65 +/- 1 min(-1) and 1.8 +/- 0.3 microm and 26 +/- 1 min(-1), respectively. These two substrates can be added to 5-methoxytryptamine, which we have recently reported to be an endogenous CYP2D6 substrate. CYP2D6 is therefore a relatively highly specific, high-affinity, high-capacity 5-methoxyindolethylamine O-demethylase. Polymorphic cytochrome CYP2D6 may therefore exert an influence on mood and behavior by the O-demethylation of these 5-methoxyindolethylamines found in the brain and pineal gland. These processes may also impact on mental and neurological health. The findings may open new vistas for the determination of CYP2D6 phenotype.


Assuntos
Carbolinas/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Oxirredutases O-Desmetilantes/metabolismo , Fenetilaminas/metabolismo , Triptaminas/metabolismo , Animais , Carbolinas/química , Humanos , Camundongos , Fenetilaminas/química , Especificidade por Substrato , Triptaminas/biossíntese , Triptaminas/química
3.
Pharmacogenetics ; 13(3): 173-81, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618595

RESUMO

Polymorphic cytochrome P450 2D6 (CYP2D6) is expressed in several types of central neurons but its function in human brain is currently unknown. Using recombinant enzymes and CYP2D6-transgenic mice, we established that 5-methoxytryptamine (5-MT), a metabolite and precursor of melatonin, is a specific and high-turnover endogenous substrate of CYP2D6. This potent serotonergic neuromodulator in numerous physiological systems binds tightly to recombinant CYP2D6 enzyme with an equilibrium dissociation constant (K(s)) of 23.4 micromol/l, and is O-demethylated to serotonin (5-hydroxytryptamine, 5-HT) with a high turnover of 51.7 min(-1) and low Michaelis-Menten constant of 19.5 micromol/l. The production of 5-HT from 5-MT catalyzed by CYP2D6 was inhibited by selective serotonin reuptake inhibitors, and their inhibition potency (K(i), micromol/l) decreased in the order of fluoxetine (0.411) > norfluoxetine (1.38) > fluvoxamine (10.1) > citalopram (10.9). Liver microsomes prepared from CYP2D6-transgenic mice showed about 16-fold higher 5-MT O-demethylase activity than that from wild-type mice. After the intravenous co-administration of 5-MT (10 mg/kg) and pargyline (20 mg/kg), serum 5-HT level was about 3-fold higher in CYP2D6-transgenic mice than wild-type mice. When dosed with alpha,alpha,beta,beta-d -5-MT, alpha,alpha,beta,beta-d4-5-HT was detected in transgenic mouse serum, and its content was much higher than wild-type mouse. alpha,alpha,beta,beta-d4-5-HT was not produced in CYP2D6-transgenic mice pretreated with quinidine. The regeneration of 5-HT from 5-MT provides the missing link in the serotonin-melatonin cycle. Up to 10% of the population lacks this enzyme. It is proposed that this common inborn error in 5-MT O-demethylation to serotonin influences a range of neurophysiologic and pathophysiologic events.


Assuntos
5-Metoxitriptamina/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Polimorfismo Genético , Animais , Catálise , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2D6/genética , Inibidores do Citocromo P-450 CYP2D6 , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microssomos Hepáticos/enzimologia , Espectrofotometria Ultravioleta
4.
J Pharmacol Exp Ther ; 305(1): 315-22, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12649384

RESUMO

The psychotropic beta-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. K(cat) (min(-1)) and K(m) Awake M) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMs. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Harmalina/metabolismo , Harmina/metabolismo , Isoenzimas/metabolismo , Psicotrópicos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , DNA Complementar/genética , Humanos , Técnicas In Vitro , Cinética , Masculino , Espectrometria de Massas , Metilação , Camundongos , Camundongos Transgênicos , Microssomos Hepáticos/metabolismo
5.
J Pharmacol Exp Ther ; 304(2): 539-46, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12538805

RESUMO

Tryptamine is a trace amine in mammalian central nervous system that interacts with the trace amine TA(2) receptor and is now thought to function as a neurotransmitter or neuromodulator. It had been reported that deamination of tryptamine to tryptophol was mediated by CYP2D6, a cytochrome P450 that is expressed in human brain, suggesting that tryptamine may be an endogenous substrate for this polymorphic enzyme. We were unable to confirm this report and have reinvestigated tryptamine metabolism in human liver microsomes (HLM) and in microsomes expressing recombinant human cytochrome P450 and monoamine oxidase (MAO) isozymes. Tryptamine was oxidized to indole-3-acetaldehyde by HLM and recombinant human MAO-A in the absence of NADPH, and indole-3-acetaldehyde was further reduced to tryptophol by aldehyde reductase in HLM in the presence of NADPH. Steady-state kinetic parameters were estimated for each reaction step by HLM and MAO-A. The CYP2D6 substrates bufuralol and debrisoquine showed strong inhibition of both tryptophol production from tryptamine in HLM and the formation of indole-3-acetaldehyde from tryptamine catalyzed by recombinant MAO-A. Anti-CYP2D6 monoclonal antibody did not inhibit these reactions. Pargyline, a nonselective MAO inhibitor, did not show cross inhibition to debrisoquine 4-hydroxylation and dextromethorphan O-demethylation by HLM and recombinant CYP2D6 enzyme. This is the first unequivocal report of the selective conversion of tryptamine to tryptophol by MAO-A. CYP2D6 does not contribute to this reaction.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Monoaminoxidase/fisiologia , Triptaminas/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Desaminação/efeitos dos fármacos , Humanos , Isoenzimas/fisiologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Inibidores da Monoaminoxidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa