Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Am Chem Soc ; 146(12): 8659-8667, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38407928

RESUMO

The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule. A newly designed Lewis acid-base type molecular B ← N organoboron adduct (consisting of an organoboron core and naphthylvinylpyridine ligands) crystallizes in two solid-state forms featuring the same chemical structure but different 3D structural topologies, namely, monomers 1 and 2. The solvate molecule-free crystals of 1 undergo topochemical photopolymerization via an unusual olefin-naphthyl ring [2 + 2] cyclization to yield the single crystalline [3]-ladderane polymer 1P growing along the B ← N linkages, accompanied by instantaneous and violent macroscopic mechanical motions or photosalient effects (such as bending-reshaping and jumping motions). In contrast, visible light-harvesting single crystals of 2 quantitatively polymerize to a B ← N bond-stabilized polymer 2P in a SCSC fashion owing to the rapid [2 + 2] cycloaddition reaction among olefin double bonds. Such olefin bonds in the crystals of 2 are suitably preorganized for photoreaction due to the presence of solvate molecules in the crystal packing. Single crystals of 2 also show photodynamic jumping motions - in response to visible light but in a relatively slower fashion than the crystals of 1. In addition to SCSC topochemical polymerization and dynamic motions, both monomer crystals and their single-crystalline polymers feature green emissive and short-lived room-temperature phosphorescence properties upon excitation with visible-light wavelength.

2.
J Am Chem Soc ; 146(19): 13113-13125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700843

RESUMO

Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.

3.
Chemistry ; 30(19): e202303072, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308544

RESUMO

Using a straightforward sequence of diphosphonylation and a Pd-catalysed concerted-metalation-deprotonation (CMD), a synthetic strategy towards polyaromatic phosphorus containing heterocycles was developed. Herein, we report the synthesis and characterization of new azaphosphaphenalenes, using easily accessible palladium catalysts and starting materials. The key tetrahydroquinoline intermediates of the reaction were synthesised via a fast and effective procedure and could be isolated as such, or further reacted towards the target polyaromatic structures. The obtained products showed interesting luminescent properties and their emission, excitation and quantum yields were evaluated.

4.
Chem Soc Rev ; 51(16): 6893-6908, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35912511

RESUMO

Recent advances reveal that upconversion (UC) luminescent materials are highly important not just from a scientific, but also from a future application standpoint. Although significant progress has been made in this field in recent decades, still their versatile applications are hindered by the low upconversion luminescence intensity and low tuneability, which has hampered further implementation in real life applications. We find it highly beneficial to compile a summary of recent relevant literature and propose ways to enhance upconversion efficiency in lanthanide nanomaterials. One very promising way to tackle this problem is through implementing transition metal ion co-dopants into the materials, which is the focus of this tutorial review. In this review, the recent studies related to the tailored design of UC materials with transition metal ion co-dopants have been summarized, and the desirable functionality of transition metal ions in the host matrixes has been discussed. Apart from improving the upconversion efficiency, the implementation of transition metal-co-dopants into lanthanide upconversion materials has recently sparked interest in applications such as in vivo imaging, drug delivery or nanothermometers.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Elementos de Transição , Íons , Luz , Luminescência
5.
Angew Chem Int Ed Engl ; 62(28): e202304722, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171876

RESUMO

In the quest for essential energy solutions towards an ecological friendly future, the transformation of visible light/solar energy into mechanical motions in metal-free luminescent crystals offers a sustainable choice of smart materials for lightweight actuating, and all-organic electronic devices. Such green energy-triggered photodynamic motions with room temperature phosphorescence (RTP) emission in molecular crystals have not been reported yet. Here, we demonstrate three new stoichiometrically different Lewis acid-base molecular organoboron crystals (PS1, PS2, and PS3), which exhibit rapid photosalient effects (ballistic splitting, moving, and jumping) under both ultraviolet (UV) and visible light associated with quantitative single-crystal-to-single-crystal (SCSC) [2+2] cycloaddition of preorganized olefins. Furthermore, these systems respond to sunlight and mobile (white) flashlight with a complete SCSC transformation in a relatively slow fashion. Remarkably, all PS1, PS2, and PS3 crystals display visible light-promoted dynamic green RTP as their emission peaks promptly blue-shift, due to instantaneous photomechanical effects. Time-dependent structural mapping of intermediate photoproducts during fast SCSC [2+2] photoreaction, by X-ray photodiffraction, reveals a rationale for the origin of these photodynamic motions associated with rapid topochemical transformations. The reported light-driven behavior (mechanical motions, dynamic phosphorescence, and topochemical reactivity), is considered advantageous for the strategic design of stimuli-responsive multi-functional crystalline materials.

6.
J Am Chem Soc ; 144(48): 22051-22058, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417296

RESUMO

Photoluminescent molecular crystals integrated with the ability to transform light energy into macroscopic mechanical motions are a promising choice of materials for both actuating and photonic devices. However, such dynamic photomechanical effects, based on molecular organoboron compounds as well as phosphorescent crystalline materials, are not yet known. Here we present an intriguing example of photomechanical molecular single crystals of a newly synthesized organoboron containing Lewis acid-base molecular adduct (BN1, substituted triphenylboroxine and 1,2-di(4-pyridyl)ethylene) having a capsule shape molecular geometry. The single crystals of BN1 under UV light exhibit controllable rapid bending-shape recovery, delamination, violent splitting-jumping, and expanding features. The detailed structural investigation by single-crystal X-ray diffraction and 1H NMR spectroscopy reveals that the photosalient behavior of the BN1 single crystals is driven by a crystal-to-crystal [2 + 2] cycloaddition reaction, supported by four donor-acceptor type B←N bonds. The instant photomechanical reaction in the BN1 crystals occurs under UV on account of sudden release of stress associated with the strained molecular geometry, significant solid-state molecular movements (supramolecular change), and cleavage of half intermolecular B←N linkages to result in a complete photodimerized single-crystalline product via the existence of two other intermediate photoproducts. In addition, the BN1 crystals display short-lived room temperature phosphorescence, and the photodynamic events are accompanied by the enhancement of their phosphorescence intensity to yield the photoproduct. Interestingly, the molecular crystals of the final photoproduct polymerize at ambient conditions when recrystallized from the solution forming a 2D supramolecular crystalline polymer stabilized by the retention of all B←N coordination modes.


Assuntos
Reação de Cicloadição
7.
Chemistry ; 27(25): 7214-7230, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539627

RESUMO

The market share of noncontact temperature sensors is expending due to fast technological and medical evolutions. In the wide variety of noncontact sensors, lanthanide-based temperature sensors stand out. They benefit from high photostability, relatively long decay times and high quantum yields. To circumvent their low molar light absorption, the incorporation of a light-harvesting antenna is required. This Review provides an overview of the nitrogen-rich antennae in lanthanide-based temperature sensors, emitting in the visible light spectrum, and discusses their temperature sensor ability. The N-rich ligands are incorporated in many different platforms. The investigation of different antennae is required to develop temperature sensors with diverse optical properties and to create a diverse offer for the multiple application fields. Molecular probes, consisting of small molecules, are first discussed. Furthermore, the thermometer properties of ratiometric temperature sensors, based on di- and polynuclear complexes, metal-organic frameworks, periodic mesoporous organosilicas and porous organic polymers, are summarized. The antenna mainly determines the application potential of the ratiometric thermometer. It can be observed that molecular probes are operational in the broad physiological range, metal-organic frameworks are generally very useful in the cryogenic region, periodic mesoporous organosilica show temperature dependency in the physiological range, and porous organic polymers are operative in the cryogenic-to-medium temperature range.

8.
Chemistry ; 27(21): 6479-6488, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33476058

RESUMO

In recent years, luminescent materials doped with Ln3+ ions have attracted much attention for their application as optical thermometers based on both downshifting and upconversion processes. This study presents research done on the development of highly sensitive optical thermometers in the physiological temperature range based on poly(methyl methacrylate) (PMMA) films doped with two series of visible Ln3+ complexes (Ln3+ =Tb3+ , Eu3+ , and Sm3+ ) and SiO2 nanoparticles (NPs) coated with these PMMA films. The best performing PMMA film doped with Tb3+ and Eu3+ complexes was the PMMA[TbEuL1 tppo]1 film (L1 =4,4,4-trifluoro-1-phenyl-1,3-butadionate; tppo=triphenylphosphine oxide), which showed good temperature sensing of Sr =4.21 % K-1 at 313 K, whereas for the PMMA films doped with Tb3+ and Sm3+ complexes the best performing was the PMMA[TbSmL2 tppo]3 film (L2 =4,4,4-trifluoro-1-(4-chlorophenyl)-1,3-butadionate), with Sr =3.64 % K-1 at 313 K. Additionally, SiO2 NPs coated with the best performing films from each of the series of PMMA films (Tb-Eu and Tb-Sm) and their temperature-sensing properties were studied in water, showing excellent performance in the physiological temperature range (PMMA[TbEuL1 tppo]1@SiO2 : Sr =3.84 % °C at 20 °C; PMMA[TbSmL2 tppo]3@SiO2 : Sr =3.27 % °C at 20 °C) and the toxicity of these nanoparticles on human cells was studied, showing that they were nontoxic.


Assuntos
Nanopartículas , Polimetil Metacrilato , Humanos , Dióxido de Silício , Temperatura , Termômetros
9.
Angew Chem Int Ed Engl ; 60(7): 3727-3736, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33170988

RESUMO

Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are a new type of support for grafting lanthanide ions (Ln3+ ), which can be employed as ratiometric luminescent thermometers. In this work we have shown that COFs co-grafted with lanthanide ions (Eu3+ , Tb3+ ) and Cu2+ (or potentially other d-metals) can synchronously be employed both as a nanothermometer and catalyst during a chemical reaction. The performance of the thermometer could be tuned by changing the grafted d-metal and solvent environment. As a proof of principle, the Glaser coupling reaction was investigated. We show that temperature can be precisely measured during the course of the catalytic reaction using luminescence thermometry. This concept could be potentially easily extended to other catalytic reactions by grafting other d-metal ions on the Ln@COF platform.

10.
Plant J ; 98(1): 165-180, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552776

RESUMO

Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above- and below-ground developmental processes, and are an important survival strategy for plants in nutrient-deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL-like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA-7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA-7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Lactonas/química , Proteólise , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Corantes Fluorescentes , Germinação , Hipocótilo/genética , Hipocótilo/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/fisiologia
11.
Chemistry ; 26(67): 15596-15604, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32519784

RESUMO

The challenge of measuring fast moving or small scale samples is based on the absence of contact between sample and sensor. Grafting lanthanides onto hybrid materials arises as one of the most promising accurate techniques to obtain noninvasive thermometers. In this work, a novel bipyridine based porous organic polymer (bpyDAT POP) was investigated as temperature sensor after grafting with Eu(acac)3 and Tb(acac)3 complexes. The bpyDAT POP successfully showed temperature-dependent behavior in the 10-310 K range, proving the potential of amorphous, porous organic frameworks. We observed unique temperature dependent behavior. More intriguingly, instead of the standard observed change in emission as a result of a change in temperature for both Eu3+ and Tb3+ , the emission spectrum of Tb3+ remained constant. This work provides framework- and energy-based explanations for the observed phenomenon. The conjugation in the bpyDAT POP framework is interrupted, creating energetically isolated Tb3+ environments. Energy transfer from Tb3+ to Eu3+ is therefore absent, nor energy back transfer from Tb3+ to bpyDAT POP ligand (i.e. no thermal quenching) is detected.

12.
Inorg Chem ; 59(9): 5929-5938, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285666

RESUMO

Two polytypes of the new oxyvanadate matrix La7O6(VO4)3 were identified and deeply characterized. The crystal structure of the α-polytype was solved using a combination of precession electron diffraction and powder X-ray diffraction (XRD) techniques. It crystallizes in a monoclinic unit cell with space group P21, a = 13.0148(3) Å, b = 19.1566(5) Å, c = 7.0764(17) Å, and ß = 99.87(1)°. Its structure is built upon [La7O6]9+ polycationic units at the origin of a porous 3D network, evidencing rectangular channels filled by isolated VO4 tetrahedra. An in situ high-temperature XRD study highlights a number of complex phase transitions assorted with the existence of a ß-polytype also refined in a monoclinic unit cell, space group P21/n, a = 13.0713(4) Å, b = 18.1835(6) Å, c = 7.1382(2) Å, and ß = 97.31(1)°. Thus, during the transitions, while the polycationic networks are almost identical, the vanadate's geometry is largely modified. The use of Eu3+ and Sm3+ at different concentrations in the host lattice is possible using solid-state techniques. The photoluminescence (PL), PL excitation (PLE) spectra, and luminescence decay times were recorded and discussed. The phosphors present an emission light, being bright and reddish orange after excitation under UV. This is mainly due to the V-O band and f-f transitions. Whatever the studied polytype, the final luminescence properties are retained during the heating/cooling process.

13.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203056

RESUMO

In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2',3'-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide's first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/2 → 4I9/2 (870.8 nm), 4F3/2 → 4I11/2 (1052.7 nm) and 4F3/2 → 4I13/2 (1334.5 nm); b) Er3+: 4I13/2 → 4I15/2 (1529.0 nm) c) Yb3+: 2F5/2 → 2F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.


Assuntos
DNA/química , Substâncias Intercalantes/química , Elementos da Série dos Lantanídeos/química , Fenazinas/química , Animais , Bovinos , Complexos de Coordenação/química , Cristalografia por Raios X , Transferência de Energia , Ligantes , Luminescência , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta , Difração de Raios X
14.
Angew Chem Int Ed Engl ; 59(5): 1932-1940, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31777996

RESUMO

Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K-1 , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers.

15.
Chemistry ; 25(69): 15944-15956, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31614041

RESUMO

Two series of novel NIR-emissive complexes of Nd3+ , Sm3+ , Er3+ and Yb3+ with two different ß-diketonate ligands (L1 =4,4,4-trifluoro-1-phenyl-1,3-butadione and L2 =4,4,4-trifluoro-1-(4-chlorophenyl)-1,3-butadione) are reported. The neutral triphenylphosphine oxide (tppo) ligand was used to replace coordinated water molecules in the first coordination sphere of the as-obtained [Ln(L1(2) )3 (H2 O)2 ] complexes to afford water-free [Ln(L1(2) )3 (tppo)2 ] molecular species. Upon replacement of water molecules by tppo units, the NIR emission lifetimes of the Nd3+ , Er3+ and Sm3+ complexes increase by about one order of magnitude up to values of ≈9, 8 and 113 ms while Yb3+ complexes reach intrinsic quantum yields as high as to ΦYb =6.5 %., which are remarkably high for fully hydrogenated complexes. Vibrational quenching by CH and OH oscillators has been quantitatively assessed by implementing the Förster's model of resonance energy transfer on the basis of experimental data. This study demonstrates that highly efficient NIR-emitting lanthanide complexes can be obtained with facile, cheap and accessible syntheses through a rational design.

16.
Chemistry ; 25(27): 6823-6830, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30882948

RESUMO

Graphene-based materials exhibit outstanding physical properties and so are potentially applicable in a great variety of fields. Unlike their corresponding oxides, graphite and graphene are not prone to functionalization. Diels-Alder reactions are among the scarce reactions that they can occur without disrupting their conjugated sp2 systems. Herein, the reaction between graphite and 3,6-di(2-pyridyl)-1,2,4,5-tetrazine under different conditions affords several graphene-based materials consisting of dipyridylpyridazine-functionalized few-layer graphene, multilayer graphene and graphite, the sheets of which act as ligands for the grafting of a europium complex. These three materials show strong red emission under 365 nm UV radiation. Their emitting particles can be visualized by confocal microscopy. The rich coordination chemistry of dipyridylpyridazine ligands has potential novel properties for similarly functionalized graphene-based materials grafted with other metal complexes.

17.
Chem Soc Rev ; 47(19): 7225-7238, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30177982

RESUMO

This tutorial review focuses on the recent advances in the topic of mixed inorganic materials, specifically rare-earth mixed inorganic materials, which have similar crystal structures to the parent material. In this review we overview the available synthetic methods employed to prepare rare-earth mixed inorganic materials and the common approaches to characterize the differences in the crystal structures when the composition varies within the mixed material. The luminescence properties are investigated after adjusting the composition of the mixed material and doping with suitable lanthanides. We focus on understanding their luminescence performance, which is a crucial step for designing new materials, and exploring their future applications. Last, the possible applications of such rare-earth mixed inorganic materials are also described and further prospects of the exploration of such materials are presented.

18.
Luminescence ; 33(3): 567-573, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29369466

RESUMO

In this work we investigate a mesoporous silica (MS) decorated with dipyridyl-pyridazine (dppz) ligands and further grafted with a mixture of Eu3+ /Tb3+ ions (28.45%:71.55%), which was investigated as a potential thermometer in the 10-360 K temperature range. The MS material was prepared employing a hetero Diels-Alder reaction: 3,6-di(2-pyridyl)-1,2,4,5-tetrazine was reacted with the double bonds of vinyl-silica (vSilica) followed by an oxidation procedure. We explore using the dppz-vSilica material to obtain visible emitting luminescent materials and for obtaining a luminescent thermometer when grafted with Eu3+ /Tb3+ ions. For the dppz-vSilica@Eu,Tb material absolute sensitivity Sa of 0.011 K-1 (210 K) and relative sensitivity Sr of 1.32 %K-1 (260 K) were calculated showing good sensing capability of the material. Upon temperature change from 10 K to 360 K the emission color of the material changed gradually from yellow to red.


Assuntos
Európio/química , Dióxido de Silício/química , Térbio/química , Termômetros , Cor , Desenho de Equipamento , Luminescência , Substâncias Luminescentes/química , Espectroscopia de Ressonância Magnética , Sensibilidade e Especificidade , Temperatura , Difração de Raios X
19.
Inorg Chem ; 56(6): 3190-3200, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28251858

RESUMO

A rare case of low-percentage trivalent lanthanide doping in multinuclear lanthanide polyoxometalates (LnPOMs) was investigated. The [La4(MoO4)(H2O)16(Mo7O24)4]14- polyanion was chosen as the host material for this study. In this polyanion the central [La4(MoO4)]10+ core is coordinated by four heptamolybdate groups as well as 16 water molecules. The tetranuclear lanthanum POM was doped with 5% of Eu3+, Tb3+, Sm3+, Dy3+, Nd3+, Er3+, and Yb3+ (according to synthesis), and the structures and luminescence properties of the x%Ln:LaPOMs were investigated. Additionally a series of tetranuclear lanthanide POMs built from [Mo7O24]6- heptamolybdate polyanions with Eu3+, Tb3+, Sm3+, Dy3+, and Nd3+ instead of La3+ were synthesized, and a detailed analysis revealed that the tetranuclear clusters formed monomers or dimers linked through oxygen bridges. The smaller lanthanide ions, namely, Er3+ and Yb3+, did not form tetranuclear clusters, but instead mononuclear sandwich-type POMs were obtained. The obtained structures were shown to be lanthanide-specific, and not a result of different synthetic/crystallization conditions. The luminescence properties of the x%Ln:LaPOMs were compared with the luminescence properties of the LnPOMs.

20.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003460

RESUMO

The scales covering the elytra of the male Hoplia coerulea beetle contain fluorophores embedded within a porous photonic structure. The photonic structure controls both insect colour (reflected light) and fluorescence emission. Herein, the effects of water-induced changes on the fluorescence emission from the beetle were investigated. The fluorescence emission peak wavelength was observed to blue-shift on water immersion of the elytra whereas its reflectance peak wavelength was observed to red-shift. Time-resolved fluorescence measurements, together with optical simulations, confirmed that the radiative emission is controlled by a naturally engineered photonic bandgap while the elytra are in the dry state, whereas non-radiative relaxation pathways dominate the emission response of wet elytra.


Assuntos
Exoesqueleto/fisiologia , Besouros/fisiologia , Cor , Meio Ambiente , Fluorescência , Água , Animais , Masculino , Fótons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa