Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870946

RESUMO

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.

2.
Annu Rev Immunol ; 33: 257-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25581309

RESUMO

Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.


Assuntos
Imunidade Inata/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Vias Biossintéticas , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Ligantes , Transdução de Sinais
3.
Cell ; 184(17): 4495-4511.e19, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34289345

RESUMO

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Multimerização Proteica , Piroptose , Transdução de Sinais , Aminoácidos/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Testes Genéticos , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas de Ligação a Fosfato/química , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Nat Immunol ; 24(7): 1064-1075, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277654

RESUMO

The regulated disruption of the plasma membrane, which can promote cell death, cytokine secretion or both is central to organismal health. The protein gasdermin D (GSDMD) is a key player in this process. GSDMD forms membrane pores that can promote cytolysis and the release of interleukin-1 family cytokines into the extracellular space. Recent discoveries have revealed biochemical and cell biological mechanisms that control GSDMD pore-forming activity and its diverse downstream immunological effects. Here, we review these multifaceted regulatory activities, including mechanisms of GSDMD activation by proteolytic cleavage, dynamics of pore assembly, regulation of GSDMD activities by posttranslational modifications, membrane repair and the interplay of GSDMD and mitochondria. We also address recent insights into the evolution of the gasdermin family and their activities in species across the kingdoms of life. In doing so, we hope to condense recent progress and inform future studies in this rapidly moving field in immunology.


Assuntos
Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Piroptose , Interleucina-1/metabolismo , Membrana Celular/metabolismo , Inflamassomos/metabolismo
5.
Cell ; 180(6): 1044-1066, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32164908

RESUMO

The study of innate immunity and its link to inflammation and host defense encompasses diverse areas of biology, ranging from genetics and biophysics to signal transduction and physiology. Central to our understanding of these events are the Toll-like receptors (TLRs), an evolutionarily ancient family of pattern recognition receptors. Herein, we describe the mechanisms and consequences of TLR-mediated signal transduction with a focus on themes identified in the TLR pathways that also explain the operation of other immune signaling pathways. These themes include the detection of conserved microbial structures to identify infectious agents and the use of supramolecular organizing centers (SMOCs) as signaling organelles that ensure digital cellular responses. Further themes include mechanisms of inducible gene expression, the coordination of gene regulation and metabolism, and the influence of these activities on adaptive immunity. Studies in these areas have informed the development of next-generation therapeutics, thus ensuring a bright future for research in this area.


Assuntos
Imunidade Inata/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Imunidade Adaptativa/imunologia , Animais , Humanos , Imunidade Inata/fisiologia , Inflamação/imunologia , Organelas/metabolismo , Transdução de Sinais/imunologia
6.
Cell ; 177(2): 384-398.e11, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853218

RESUMO

The signaling organelles of the innate immune system consist of oligomeric protein complexes known as supramolecular organizing centers (SMOCs). Examples of SMOCs include myddosomes and inflammasomes, which respectively induce transcription-dependent and -independent inflammatory responses. The common use of oligomeric structures as signaling platforms suggests multifunctionality, but each SMOC has a singular biochemically defined function. Here, we report that the myddosome is a multifunctional organizing center. In addition to promoting inflammatory transcription factor activation, the myddosome drives the rapid induction of glycolysis. We identify the kinase TBK1 as a myddosome component that promotes glycolysis, but not nuclear factor κB (NF-κB) activation. Synthetic immunology approaches further diversified SMOC activities, as we created interferon- or necroptosis-inducing myddosomes, inflammasomes that induce interferon responses instead of pyroptosis, and a SMOC-like nanomachine that induces interferon expression in response to a chemical ligand. These discoveries demonstrate the flexibility of immune signaling organelles, which permits the design of user-defined innate immune responses.


Assuntos
Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Transdução de Sinais/imunologia , Animais , Glicólise/imunologia , Inflamassomos , Camundongos , Camundongos Endogâmicos C57BL , Enzimas Multifuncionais/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Organelas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Toll-Like
7.
Cell ; 176(6): 1432-1446.e11, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827685

RESUMO

The presence of DNA in the cytosol of mammalian cells is an unusual event that is often associated with genotoxic stress or viral infection. The enzyme cGAS is a sensor of cytosolic DNA that induces interferon and inflammatory responses that can be protective or pathologic, depending on the context. Along with other cytosolic innate immune receptors, cGAS is thought to diffuse throughout the cytosol in search of its DNA ligand. Herein, we report that cGAS is not a cytosolic protein but rather localizes to the plasma membrane via the actions of an N-terminal phosphoinositide-binding domain. This domain interacts selectively with PI(4,5)P2, and cGAS mutants defective for lipid binding are mislocalized to the cytosolic and nuclear compartments. Mislocalized cGAS induces potent interferon responses to genotoxic stress, but weaker responses to viral infection. These data establish the subcellular positioning of a cytosolic innate immune receptor as a mechanism that governs self-nonself discrimination.


Assuntos
Membrana Celular/fisiologia , Nucleotidiltransferases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Citosol/fisiologia , DNA Viral/genética , Feminino , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/fisiologia , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfatidilinositóis , Ligação Proteica , Transdução de Sinais/imunologia
8.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733997

RESUMO

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Assuntos
Caspase 1 , Microscopia Crioeletrônica , Interleucina-18 , Transdução de Sinais , Interleucina-18/metabolismo , Caspase 1/metabolismo , Humanos , Inflamassomos/metabolismo , Animais , Conformação Proteica , Ligação Proteica , Sítios de Ligação , Camundongos , Receptores de Interleucina-18/metabolismo , Modelos Moleculares , Peptídeos e Proteínas de Sinalização Intercelular
9.
Immunity ; 56(10): 2206-2217, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37703879

RESUMO

The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.


Assuntos
Neoplasias , Humanos , Citocinas , Transdução de Sinais , Imunidade Inata , Imunoterapia , Microambiente Tumoral
10.
Immunity ; 56(11): 2523-2541.e8, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37924812

RESUMO

Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.


Assuntos
Gasderminas , Piroptose , Proteínas de Neoplasias/metabolismo , Cardiolipinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inflamassomos/metabolismo
11.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38925114

RESUMO

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Assuntos
Fator Regulador 3 de Interferon , Interferons , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Humanos , Interferons/metabolismo , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Domínios Proteicos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Motivos de Aminoácidos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
13.
Immunity ; 54(7): 1447-1462.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33979579

RESUMO

Two sets of innate immune proteins detect pathogens. Pattern recognition receptors (PRRs) bind microbial products, whereas guard proteins detect virulence factor activities by the surveillance of homeostatic processes within cells. While PRRs are well known for their roles in many types of infections, the role of guard proteins in most infectious contexts remains less understood. Here, we demonstrated that inhibition of protein synthesis during viral infection is sensed as a virulence strategy and initiates pyroptosis in human keratinocytes. We identified the BCL-2 family members MCL-1 and BCL-xL as sensors of translation shutdown. Virus- or chemical-induced translation inhibition resulted in MCL-1 depletion and inactivation of BCL-xL, leading to mitochondrial damage, caspase-3-dependent cleavage of gasdermin E, and release of interleukin-1α (IL-1α). Blocking this pathway enhanced virus replication in an organoid model of human skin. Thus, MCL-1 and BCL-xL can act as guard proteins within barrier epithelia and contribute to antiviral defense.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Piroptose/imunologia , Receptores de Estrogênio/imunologia , Vírus/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Caspase 3/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Interleucina-1alfa/imunologia , Camundongos , Mitocôndrias/imunologia , Células NIH 3T3 , Células Vero , Replicação Viral/imunologia , Proteína bcl-X/imunologia
14.
Nature ; 631(8021): 635-644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961291

RESUMO

Innate immune pattern recognition receptors, such as the Toll-like receptors (TLRs), are key mediators of the immune response to infection and central to our understanding of health and disease1. After microbial detection, these receptors activate inflammatory signal transduction pathways that involve IκB kinases, mitogen-activated protein kinases, ubiquitin ligases and other adaptor proteins. The mechanisms that connect the proteins in the TLR pathways are poorly defined. To delineate TLR pathway activities, we engineered macrophages to enable microscopy and proteomic analysis of the endogenous myddosome constituent MyD88. We found that myddosomes form transient contacts with activated TLRs and that TLR-free myddosomes are dynamic in size, number and composition over the course of 24 h. Analysis using super-resolution microscopy revealed that, within most myddosomes, MyD88 forms barrel-like structures that function as scaffolds for effector protein recruitment. Proteomic analysis demonstrated that myddosomes contain proteins that act at all stages and regulate all effector responses of the TLR pathways, and genetic analysis defined the epistatic relationship between these effector modules. Myddosome assembly was evident in cells infected with Listeria monocytogenes, but these bacteria evaded myddosome assembly and TLR signalling during cell-to-cell spread. On the basis of these findings, we propose that the entire TLR signalling pathway is executed from within the myddosome.


Assuntos
Macrófagos , Transdução de Sinais , Receptores Toll-Like , Animais , Humanos , Camundongos , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Listeriose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Proteômica , Receptores Toll-Like/metabolismo , Microscopia , Imunidade Inata
15.
Nature ; 630(8016): 437-446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599239

RESUMO

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Assuntos
Gasderminas , Lipoilação , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Microscopia Crioeletrônica , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamassomos/metabolismo , Lipossomos/metabolismo , Lipossomos/química , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
16.
Cell ; 156(4): 800-11, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529381

RESUMO

Bacterial and viral mRNAs are often polycistronic. Akin to alternative splicing, alternative translation of polycistronic messages is a mechanism to generate protein diversity and regulate gene function. Although a few examples exist, the use of polycistronic messages in mammalian cells is not widely appreciated. Here we report an example of alternative translation as a means of regulating innate immune signaling. MAVS, a regulator of antiviral innate immunity, is expressed from a bicistronic mRNA encoding a second protein, miniMAVS. This truncated variant interferes with interferon production induced by full-length MAVS, whereas both proteins positively regulate cell death. To identify other polycistronic messages, we carried out genome-wide ribosomal profiling and identified a class of antiviral truncated variants. This study therefore reveals the existence of a functionally important bicistronic antiviral mRNA and suggests a widespread role for polycistronic mRNAs in the innate immune system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Biossíntese de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Morte Celular , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Transdução de Sinais , Células U937
17.
Cell ; 156(4): 705-16, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529375

RESUMO

The Toll-like receptors (TLRs) of the innate immune system are unusual in that individual family members are located on different organelles, yet most activate a common signaling pathway important for host defense. It remains unclear how this common signaling pathway can be activated from multiple subcellular locations. Here, we report that, in response to natural activators of innate immunity, the sorting adaptor TIRAP regulates TLR signaling from the plasma membrane and endosomes. TLR signaling from both locations triggers the TIRAP-dependent assembly of the myddosome, a protein complex that controls proinflammatory cytokine expression. The actions of TIRAP depend on the promiscuity of its phosphoinositide-binding domain. Different lipid targets of this domain direct TIRAP to different organelles, allowing it to survey multiple compartments for the presence of activated TLRs. These data establish how promiscuity, rather than specificity, can be a beneficial means of diversifying the subcellular sites of innate immune signal transduction.


Assuntos
Imunidade Inata , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Herpes Simples/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/imunologia
18.
Nature ; 624(7991): 451-459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993712

RESUMO

Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines1,2. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1ß and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes3. Here we demonstrate that the lipopolysaccharide receptor caspase-4 from humans and other mammalian species (except rodents) can cleave pro-IL-18 with an efficiency similar to pro-IL-1ß and pro-IL-18 cleavage by the prototypical IL-1-converting enzyme caspase-1. This ability of caspase-4 to cleave pro-IL-18, combined with its previously defined ability to cleave and activate the lytic pore-forming protein gasdermin D (GSDMD)4,5, enables human cells to bypass the need for canonical inflammasomes and caspase-1 for IL-18 release. The structure of the caspase-4-pro-IL-18 complex determined using cryogenic electron microscopy reveals that pro-lL-18 interacts with caspase-4 through two distinct interfaces: a protease exosite and an interface at the caspase-4 active site involving residues in the pro-domain of pro-IL-18, including the tetrapeptide caspase-recognition sequence6. The mechanisms revealed for cytokine substrate capture and cleavage differ from those observed for the caspase substrate GSDMD7,8. These findings provide a structural framework for the discussion of caspase activities in health and disease.


Assuntos
Caspases Iniciadoras , Interleucina-18 , Interleucina-1beta , Animais , Humanos , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Microscopia Crioeletrônica , Gasderminas/metabolismo , Inflamassomos/metabolismo , Interleucina-18/química , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Domínio Catalítico
19.
Nat Immunol ; 17(8): 922-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270400

RESUMO

Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1ß that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.


Assuntos
Alquil e Aril Transferases/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Macrófagos/fisiologia , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pirina/genética , Alquil e Aril Transferases/genética , Animais , Células Cultivadas , Febre Familiar do Mediterrâneo/genética , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Receptores Toll-Like/metabolismo
20.
Immunity ; 51(4): 609-624, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473100

RESUMO

Inflammasomes are supramolecular organizing centers that operate to drive interleukin-1 (IL-1)-dependent inflammation. Depending on context, inflammatory caspases act upstream or downstream of inflammasome assembly, serving as the principal enzymes that control activities of these organelles. In this review, we discuss mechanisms of inflammasome assembly and signaling. We posit that upstream regulatory proteins, classically known as pattern-recognition receptors, operate to assess infectious and non-infectious threats to the host. Threat assessment is achieved through two general strategies: (1) direct binding of receptors to microbial or host-derived ligands or (2) indirect detection of changes in cellular homeostasis. Upon activation, these upstream regulatory factors seed the assembly of inflammasomes, leading to IL-1 family cytokine release from living (hyperactive) or dead (pyroptotic) cells. The molecular and physiological consequences of these distinct cell fate decisions are discussed.


Assuntos
Inflamassomos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Caspases/metabolismo , Humanos , Sistema Imunitário , Imunidade Inata , Interleucina-1/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa