Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(22): 3121-3131, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944919

RESUMO

ConspectusIn recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.


Assuntos
Nucleosídeos , RNA , Humanos , Nucleosídeos/química , RNA/química , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
2.
RSC Chem Biol ; 4(5): 354-362, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181633

RESUMO

RNA is dynamically modified and has the potential to respond to environmental changes and tune translation. The objective of this work is to uncover the temporal limitation of our recently developed cell culture NAIL-MS (nucleic acid isotope labelling coupled mass spectrometry) technology and overcome it. Actinomycin D (AcmD), an inhibitor of transcription, was used in the NAIL-MS context to reveal the origin of hybrid nucleoside signals composed of unlabelled nucleosides and labelled methylation marks. We find that the formation of these hybrid species depends exclusively on transcription for Poly-A RNA and rRNA but is partly transcription-independent for tRNA. This finding suggests that tRNA modifications adapt and are dynamically regulated by cells to overcome e.g. stress. Future studies on the tRNA modification mediated stress response are now accessible and the temporal resolution of NAIL-MS is improved by the use of AcmD.

3.
Antiviral Res ; 218: 105716, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690700

RESUMO

Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation. Dose-dependent incorporation occurred up to 1.8 S per 1,000 nucleotides (49 S per genome) throughout the viral genomes isolated from both infected cells and viral particles, but this incorporation did not change the viral mutation rate. In contrast, host mRNA, affinity purified from the same infected and treated cells, contained little or no S. Sangivamycin triphosphate (STP) was synthesized to evaluate its incorporation into RNA by recombinant SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) under defined in vitro conditions. SARS-CoV-2 RdRp showed that S was not a chain terminator and S containing oligonucleotides templated as A. Though the antiviral mechanism remains to be determined, the data suggests that SARS-CoV-2 RdRp incorporates STP into SARS-CoV-2 RNA, which does not significantly impair viral RNA synthesis or the mutation rate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa