Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 512(7512): 44-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25079326

RESUMO

The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.


Assuntos
Evolução Biológica , Fósseis , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Simulação por Computador , Ectodisplasinas/deficiência , Ectodisplasinas/genética , Ectodisplasinas/farmacologia , Feminino , Deleção de Genes , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Técnicas In Vitro , Masculino , Camundongos , Dente Molar/anatomia & histologia , Dente Molar/efeitos dos fármacos , Dente Molar/crescimento & desenvolvimento , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Dente/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 113(19): 5317-22, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114549

RESUMO

The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology.


Assuntos
Exoesqueleto/fisiologia , Padronização Corporal/fisiologia , Mesoderma/crescimento & desenvolvimento , Osteogênese/fisiologia , Proteoma/metabolismo , Tartarugas/fisiologia , Exoesqueleto/crescimento & desenvolvimento , Animais , Condrogênese/fisiologia
3.
Development ; 142(22): 3954-63, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450968

RESUMO

Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Dente Molar/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Coroa do Dente/embriologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Epitélio/metabolismo , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Nature ; 483(7389): 324-7, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398444

RESUMO

One of the fascinating aspects of the history of life is the apparent increase in morphological complexity through time, a well known example being mammalian cheek tooth evolution. In contrast, experimental studies of development more readily show a decrease in complexity, again well exemplified by mammalian teeth, in which tooth crown features called cusps are frequently lost in mutant and transgenic mice. Here we report that mouse tooth complexity can be increased substantially by adjusting multiple signalling pathways simultaneously. We cultured teeth in vitro and adjusted ectodysplasin (EDA), activin A and sonic hedgehog (SHH) pathways, all of which are individually required for normal tooth development. We quantified tooth complexity using the number of cusps and a topographic measure of surface complexity. The results show that whereas activation of EDA and activin A signalling, and inhibition of SHH signalling, individually cause subtle to moderate increases in complexity, cusp number is doubled when all three pathways are adjusted in unison. Furthermore, the increase in cusp number does not result from an increase in tooth size, but from an altered primary patterning phase of development. The combination of a lack of complex mutants, the paucity of natural variants with complex phenotypes, and our results of greatly increased dental complexity using multiple pathways, suggests that an increase may be inherently different from a decrease in phenotypic complexity.


Assuntos
Evolução Biológica , Dente Molar/anatomia & histologia , Dente Molar/metabolismo , Transdução de Sinais , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Biologia do Desenvolvimento , Ectodisplasinas/metabolismo , Ectodisplasinas/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Camundongos , Dente Molar/efeitos dos fármacos , Dente Molar/embriologia , Mutação , Técnicas de Cultura de Órgãos , Fenótipo , Transdução de Sinais/efeitos dos fármacos
5.
Development ; 141(15): 3033-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053434

RESUMO

The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell.


Assuntos
Exoesqueleto/embriologia , Padronização Corporal , Tartarugas/embriologia , Exoesqueleto/fisiologia , Animais , Evolução Biológica , Desenvolvimento Ósseo , Proteínas Morfogenéticas Ósseas/metabolismo , Simulação por Computador , Embrião não Mamífero/anatomia & histologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Imageamento Tridimensional , Hibridização In Situ , Transdução de Sinais , Tartarugas/fisiologia
6.
J Exp Zool B Mol Dev Evol ; 324(3): 255-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678399

RESUMO

A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record.


Assuntos
Proteína Morfogenética Óssea 4/genética , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas de Homeodomínio/genética , Odontogênese/genética , Jacarés e Crocodilos , Animais , Proteína Morfogenética Óssea 4/metabolismo , Embrião de Galinha , Galinhas , Embrião de Mamíferos , Embrião não Mamífero , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Mandíbula/metabolismo , Camundongos , Monodelphis , Transdução de Sinais , Especificidade da Espécie , Tartarugas
7.
Biomacromolecules ; 11(4): 1111-7, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20329744

RESUMO

To understand the limitations occurring during enzymatic hydrolysis of cellulosic materials in renewable energy production, we used wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), X-ray microtomography, and transmission electron microscopy (TEM) to characterize submicrometer changes in the structure of microcrystalline cellulose (Avicel) digested with the Trichoderma reesei enzyme system. The microtomography measurements showed a clear decrease in particle size in scale of tens of micrometers. In all the TEM pictures, similar elongated and partly ramified structures were observed, independent of the hydrolysis time. The SAXS results of rewetted samples suggested a slight change in the structure in scale of 10-20 nm, whereas the WAXS results confirmed that the degree of crystallinity and the crystal sizes remained unchanged. This indicates that the enzymes act on the surface of cellulose bundles and are unable to penetrate into the nanopores of wet cellulose.


Assuntos
Celulases/metabolismo , Celulose/química , Celulose/ultraestrutura , beta-Glucosidase/metabolismo , Aspergillus niger/enzimologia , Celulose/metabolismo , Hidrólise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Trichoderma/enzimologia , Difração de Raios X , Microtomografia por Raio-X
8.
Nat Commun ; 11(1): 5121, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046697

RESUMO

Despite considerable advances in knowledge of the anatomy, ecology and evolution of early mammals, far less is known about their physiology. Evidence is contradictory concerning the timing and fossil groups in which mammalian endothermy arose. To determine the state of metabolic evolution in two of the earliest stem-mammals, the Early Jurassic Morganucodon and Kuehneotherium, we use separate proxies for basal and maximum metabolic rate. Here we report, using synchrotron X-ray tomographic imaging of incremental tooth cementum, that they had maximum lifespans considerably longer than comparably sized living mammals, but similar to those of reptiles, and so they likely had reptilian-level basal metabolic rates. Measurements of femoral nutrient foramina show Morganucodon had blood flow rates intermediate between living mammals and reptiles, suggesting maximum metabolic rates increased evolutionarily before basal metabolic rates. Stem mammals lacked the elevated endothermic metabolism of living mammals, highlighting the mosaic nature of mammalian physiological evolution.


Assuntos
Mamíferos/fisiologia , Répteis/fisiologia , Animais , Metabolismo Basal , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , História Antiga , Mamíferos/classificação , Filogenia , Tomografia por Raios X , Dente/anatomia & histologia , Dente/química
9.
Plant Methods ; 13: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28077951

RESUMO

BACKGROUND: Biological materials have a complex, hierarchical structure, with vital structural features present at all size scales, from the nanoscale to the macroscale. A method that can connect information at multiple length scales has great potential to reveal novel information. This article presents one such method with an application to the bamboo culm wall. Moso (Phyllostachys edulis) bamboo is a commercially important bamboo species. At the cellular level, bamboo culm wall consists of vascular bundles embedded in a parenchyma cell tissue matrix. The microfibril angle (MFA) in the bamboo cell wall is related to its macroscopic longitudinal stiffness and strength and can be determined at the nanoscale with wide-angle X-ray scattering (WAXS). Combining WAXS with X-ray microtomography (XMT) allows tissue-specific study of the bamboo culm without invasive chemical treatment. RESULTS: The scattering contribution of the fiber and parenchyma cells were separated with spatially-localized WAXS. The fiber component was dominated by a high degree of orientation corresponding to small MFAs (mean MFA 11°). The parenchyma component showed significantly lower degree of orientation with a maximum at larger angles (mean MFA 65°). The fiber ratio, the volume of cell wall in the fibers relative to the overall volume of cell wall, was determined by fitting the scattering intensities with these two components. The fiber ratio was also determined from the XMT data and similar fiber ratios were obtained from the two methods, one connected to the cellular level and one to the nanoscale. X-ray diffraction tomography was also done to study the differences in microfibril orientation between fibers and the parenchyma and further connect the microscale to the nanoscale. CONCLUSIONS: The spatially-localized WAXS yields biologically relevant, tissue-specific information. With the custom-made bench-top set-up presented, diffraction contrast information can be obtained from plant tissue (1) from regions-of-interest, (2) as a function of distance (line scan), or (3) with two-dimensional or three-dimensional tomography. This nanoscale information is connected to the cellular level features.

11.
J R Soc Interface ; 13(120)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27411727

RESUMO

Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate.


Assuntos
Mastigação , Modelos Biológicos , Dente Molar/patologia , Dente Molar/fisiopatologia , Desgaste dos Dentes/patologia , Desgaste dos Dentes/fisiopatologia , Animais , Cavalos
12.
Bone Rep ; 3: 76-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28377970

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb-/-) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb-/- mice. Histology from Cstb-/- mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb-/- group. Cstb-/- osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb-/- mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.

13.
Int J Pharm ; 422(1-2): 125-31, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22063301

RESUMO

In this study, indomethacin-loaded thermally oxidized mesoporous silicon microparticles (TOPSi-IMC) were formulated into tablets with excipients in order to improve the dissolution and permeability properties of the poorly soluble drug. Formulations of TOPSi-IMC particles and excipients were prepared at different TOPSi-IMC particle ratios (25, 30 and 35%). The formulations were compressed by direct compression technique with a single punch tablet machine. For comparison, a formulation containing the bulk IMC (indomethacin) and the same excipients without thermally oxidized mesoporous silicon microparticles particles (TOPSi) was prepared and compressed into tablets. The TOPSi-IMC tablets were characterised according to weight, thickness, crushing strength, disintegration time and dissolution rate. The results of this study show that TOPSi-IMC particles can be compressed to a conventional tablet. The release rate of the drug and its permeation across intestinal cells model (Caco-2) from TOPSi-IMC tablets was improved compared to the bulk IMC tablets. The dissolution rate and permeability of IMC from the tablets decreased with increasing ratio of the TOPSi-IMC particles in the formulation. The phenomenon is, presumably, a result of the loss of unique pore structure of the particles due to deformation of the particles under the compression load.


Assuntos
Anti-Inflamatórios não Esteroides/química , Portadores de Fármacos , Indometacina/química , Silício/química , Anti-Inflamatórios não Esteroides/metabolismo , Células CACO-2 , Química Farmacêutica , Força Compressiva , Composição de Medicamentos , Excipientes/química , Humanos , Indometacina/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Cinética , Oxirredução , Tamanho da Partícula , Permeabilidade , Porosidade , Solubilidade , Comprimidos , Tecnologia Farmacêutica/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa