Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 41(39): 8150-8162, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34380763

RESUMO

Throughout development, neuronal identity is controlled by key transcription factors that determine the unique properties of a cell. During embryogenesis, the transcription factor Prox1 regulates VIP-positive cortical interneuron migration, survival, and connectivity. Here, we explore the role of Prox1 as a regulator of genetic programs that guide the final specification of VIP interneuron subtypes in early postnatal life. Synaptic in vitro electrophysiology in male and female mice shows that postnatal Prox1 removal differentially affects the dynamics of excitatory inputs onto VIP bipolar and multipolar subtypes. RNA sequencing reveals that one of the downstream targets of Prox1 is the postsynaptic protein Elfn1, a constitutive regulator of presynaptic release probability. Further genetic, pharmacological, and electrophysiological experiments demonstrate that removing Prox1 reduces Elfn1 function in VIP multipolar but not in bipolar cells. Finally, overexpression experiments and analysis of native Elfn1 mRNA expression reveal that Elfn1 levels are differentially controlled at the post-transcriptional stage. Thus, in addition to activity-dependent processes that contribute to the developmental trajectory of VIP cells, genetic programs engaged by Prox1 control the final differentiation of multipolar and bipolar subtypes.SIGNIFICANCE STATEMENT The transcription factor Prox1 generates functional diversification of cortical VIP interneuron subtypes in early postnatal life, thus expanding the inhibitory repertoire of the cortex.


Assuntos
Córtex Cerebral/metabolismo , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Movimento Celular , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Proteínas Supressoras de Tumor/genética
2.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828548

RESUMO

Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.


Assuntos
Proteínas ADAM , Axônios , Bainha de Mielina , Proteínas do Tecido Nervoso , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potenciais de Ação , Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Nós Neurofibrosos/metabolismo , Proteínas ADAM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
3.
Elife ; 92020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32366357

RESUMO

Eukaryotic 5'-3' mRNA decay plays important roles during development and in response to stress, regulating gene expression post-transcriptionally. In Caenorhabditis elegans, deficiency of DCAP-1/DCP1, the essential co-factor of the major cytoplasmic mRNA decapping enzyme, impacts normal development, stress survival and ageing. Here, we show that overexpression of dcap-1 in neurons of worms is sufficient to increase lifespan through the function of the insulin/IGF-like signaling and its effector DAF-16/FOXO transcription factor. Neuronal DCAP-1 affects basal levels of INS-7, an ageing-related insulin-like peptide, which acts in the intestine to determine lifespan. Short-lived dcap-1 mutants exhibit a neurosecretion-dependent upregulation of intestinal ins-7 transcription, and diminished nuclear localization of DAF-16/FOXO. Moreover, neuronal overexpression of DCP1 in Drosophila melanogaster confers longevity in adults, while neuronal DCP1 deficiency shortens lifespan and affects wing morphogenesis, cell non-autonomously. Our genetic analysis in two model-organisms suggests a critical and conserved function of DCAP-1/DCP1 in developmental events and lifespan modulation.


Assuntos
Envelhecimento/genética , Sistemas Neurossecretores/fisiologia , Estabilidade de RNA/genética , RNA Mensageiro/genética , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Endorribonucleases/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/fisiologia , Sistemas Neurossecretores/crescimento & desenvolvimento , Estabilidade de RNA/fisiologia , RNA Mensageiro/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa