Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762391

RESUMO

Cerebral amyloid angiopathy (CAA) is characterized by amyloid ß (Aß) accumulation in the blood vessels and is associated with cognitive impairment in Alzheimer's disease (AD). The increased accumulation of Aß is also present in the retinal blood vessels and a significant correlation between retinal and brain amyloid deposition was demonstrated in living patients and animal AD models. The Aß accumulation in the retinal blood vessels can be the result of impaired transcytosis and/or the dysfunctional ocular glymphatic system in AD and during aging. We analyzed the changes in the mRNA and protein expression of major facilitator superfamily domain-containing protein2a (Mfsd2a), the major regulator of transcytosis, and of Aquaporin4 (Aqp4), the key player implicated in the functioning of the glymphatic system, in the retinas of 4- and 12-month-old WT and 5xFAD female mice. A strong decrease in the Mfsd2a mRNA and protein expression was observed in the 4 M and 12 M 5xFAD and 12 M WT retinas. The increase in the expression of srebp1-c could be at least partially responsible for the Mfsd2a decrease in the 4 M 5xFAD retinas. The decrease in the pericyte (CD13+) coverage of retinal blood vessels in the 4 M and 12 M 5xFAD retinas and in the 12 M WT retinas suggests that pericyte loss could be associated with the Mfsd2a downregulation in these experimental groups. The observed increase in Aqp4 expression in 4 M and 12 M 5xFAD and 12 M WT retinas accompanied by the decreased perivascular Aqp4 expression is indicative of the impaired glymphatic system. The findings in this study reveal the impaired Mfsd2a and Aqp4 expression and Aqp4 perivascular mislocalization in retinal blood vessels during physiological (WT) and pathological (5xFAD) aging, indicating their importance as putative targets for the development of new treatments that can improve the regulation of transcytosis or the function of the glymphatic system.

2.
Nutr Neurosci ; 25(3): 537-549, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32476608

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young and middle aged people. Food restriction (FR) has been shown to act neuroprotectively in animal models of stroke and TBI. Indeed, our previous studies showed that FR attenuates inflammation, through suppression of microglial activation and TNF-α production, suppresses caspase-3-induced neuronal cell death and enhances neuroplasticity in the rat model of TBI. Glucocorticoids (GCs) play a central role in mediating both molecular and behavioral responses to food restriction. However, the exact mechanisms of FR neuroprotection in TBI are still unclear. The goal of the present study was to examine whether FR exerts its beneficial effects by altering the glucocorticoid receptor (GR) signaling alone and/or together with other protective factors. METHODS: To this end, we examined the effects of FR (50% of regular daily food intake for 3 months prior to TBI) on the protein levels of total GR, GR phosphoisoform Ser232 (p-GR) and its transcriptional activity, as well as 11ß-HSD1, NFκB (p65) and HSP70 as factors related to the GR signaling. RESULTS: Our results demonstrate that FR applied prior to TBI significantly changes p-GR levels, and it's transcriptional activity during the recovery period after TBI. Moreover, as a pretreatment, FR modulates other protective factors in response to TBI, such as 11ß-HSD1, NF-κB (p65) and HSP70 that act in parallel with GR in it's anti-inflammatory and neuroprotective effects in the rat model of brain injury. CONCLUSION: Our results suggest that prophylactic FR represents a potent non-invasive approach capable of changing GR signalling, together with other factors related to the GR signaling in the model of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Modelos Animais de Doenças , Glucocorticoides , Humanos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Neurobiol Dis ; 136: 104745, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931140

RESUMO

Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-ß (Aß) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aß load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aß pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Jejum/efeitos adversos , Jejum/metabolismo , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia
4.
Biogerontology ; 19(2): 121-132, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29340834

RESUMO

Albeit aging is an inevitable process, the rate of aging is susceptible to modifications. Dietary restriction (DR) is a vigorous nongenetic and nonpharmacological intervention that is known to delay aging and increase healthspan in diverse species. This study aimed to compare the impact of different restricting feeding regimes such as limited daily feeding (LDF, 60% AL) and intermittent feeding (IF) on brain energy homeostasis during aging. The analysis was focused on the key molecules in glucose and cholesterol metabolism in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. We measured the impact of different DRs on the expression levels of AMPK, glucose transporters (GLUT1, GLUT3, GLUT4), and the rate-limiting enzyme in the cholesterol synthesis pathway (HMGCR). Additionally, we assessed the changes in the amounts of cholesterol, its metabolite, and precursors following LDF and IF. IF decreased the levels of AMPK and pAMPK in the cortex while the increased levels were detected in the hippocampus. Glucose metabolism was more affected in the cortex, while cholesterol metabolism was more influenced in the hippocampus. Overall, the hippocampus was more resilient to the DRs, with fewer changes compared to the cortex. We showed that LDF and IF differently affected the brain energy homeostasis during aging and that specific brain regions exhibited distinct vulnerabilities towards DRs. Consequently, special attention should be paid to the DR application among elderly as different phases of aging do not respond equally to altered nutritional regimes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Restrição Calórica/métodos , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Córtex Cerebral/metabolismo , Colesterol/metabolismo , Metabolismo Energético , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Modelos Animais , Ratos , Ratos Wistar
5.
Paediatr Anaesth ; 28(6): 537-546, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752843

RESUMO

BACKGROUND: The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. AIMS: The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. METHODS: The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. RESULTS: Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. CONCLUSION: In peripubertal rats, propofol anesthesia exposure affects memory retrieval and acquisition of new learning in the spatial and nonspatial, nonaversive learning tasks 24 hour after the treatment, along with the expression of molecules that participate in memory retrieval/reconsolidation in the dorsal hippocampus. These results may have clinical implications, favoring control of basic cognitive functions in older children after the propofol exposure.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipnóticos e Sedativos/efeitos adversos , Transtornos da Memória/induzido quimicamente , Propofol/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Wistar
6.
Paediatr Anaesth ; 27(9): 962-972, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28772011

RESUMO

BACKGROUND: Propofol is commonly used in modern anesthesiology. Some findings suggest that it is highly addictive. AIM: In this study it was examined whether propofol anesthesia exposure was able to induce behavioral alterations and brain molecular changes already described in addictive drug usage in peripubertal rats, during the onset of mid/periadolescence as a developmental period with increasing vulnerability to drug addiction. METHODS: The expression of D1 dopamine receptor, a dopamine, and cAMP-regulated phosphoprotein with a Mr 32 000; Ca2+ /calmodulin-dependent protein kinase IIα; and Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B was examined in peripubertal rats 4, 24, and 48 hour after propofol anesthesia exposure by Western blot and immunohistochemistry. Brain regions of interest were the medial prefrontal cortex, the striatum, and the thalamus. Anxiety and behavioral cross-sensitization to d-amphetamine were examined as well. RESULTS: Significant increase in the expression of dopamine and cAMP-regulated phosphoprotein with a Mr 32 000 phosphorylated at threonine 34, a postsynaptic marker of dopaminergic neurotransmission, and Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B, a marker of neuronal activity, was detected in the thalamus of experimental animals 4-24 hour after the treatment, with the accent on the paraventricular thalamic nucleus. Significant increase in the expression of Ca2+ /calmodulin-dependent protein kinase IIα phosphorylated at threonine 286, a sensor of synaptic activity, was observed in the prefrontal cortex and the striatum 24 hour after propofol anesthesia exposure. It was accompanied by a significant decrease in Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B expression in the striatum. Decreased behavioral inhibition in aversive environment and increased motor response to d-amphetamine in a context-independent manner were observed as well. CONCLUSION: In peripubertal rats, propofol anesthesia exposure induces transient molecular and behavioral response that share similarities with those reported previously for addictive drugs. In the absence of additional pharmacological manipulation, all detected effects receded within 48 hour after the treatment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Animais , Western Blotting , Encéfalo/metabolismo , Dopamina/metabolismo , Masculino , Modelos Animais , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar
7.
J Neurosci ; 35(37): 12766-78, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377465

RESUMO

The blood-CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimer's disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid ß (Aß) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimer's disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of Aß on the functionality of the BCSFB. Intracerebroventricular injection of Aß1-42 oligomers into the cerebral ventricles of mice, a validated Alzheimer's disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. Aß1-42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by Aß1-42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by Aß1-42 oligomers. Our results reveal that Alzheimer's disease-associated soluble Aß1-42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target. SIGNIFICANCE STATEMENT: No treatments are yet available to cure Alzheimer's disease; however, soluble Aß oligomers are believed to play a crucial role in the neuroinflammation that is observed in this disease. Here, we studied the effect of Aß oligomers on the often neglected barrier between blood and brain, called the blood-CSF barrier (BCSFB). This BCSFB is formed by the choroid plexus epithelial cells and is important in maintaining brain homeostasis. We observed Aß oligomer-induced changes in morphology and loss of BCSFB integrity that might play a role in Alzheimer's disease progression. Strikingly, both inhibition of matrix metalloproteinase (MMP) activity and MMP3 deficiency could protect against the detrimental effects of Aß oligomer. Clearly, our results suggest that MMP inhibition might have therapeutic potential.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Metaloproteinases da Matriz/fisiologia , Fragmentos de Peptídeos/farmacologia , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/química , Animais , Biopolímeros , Barreira Hematoencefálica/enzimologia , Permeabilidade Capilar/efeitos dos fármacos , Forma Celular , Quimiocinas/líquido cefalorraquidiano , Plexo Corióideo/citologia , Citocinas/líquido cefalorraquidiano , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Injeções Intraventriculares , Metaloproteinase 3 da Matriz/deficiência , Metaloproteinase 3 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Inibidores de Proteases/farmacologia , Organismos Livres de Patógenos Específicos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/fisiologia
8.
Biogerontology ; 16(1): 71-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344640

RESUMO

Dietary restriction (DR) exerts significant beneficial effects in terms of aging and age-related diseases in many organisms including humans. The present study aimed to examine the influence of long-term DR on the BDNF system at the transcriptional and translational levels in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. The obtained results revealed that the DR upregulated the expression of exon-specific BDNF transcripts in both regions, followed by elevated levels of mBDNF only in the cortex in middle-aged animals. In aged animals, DR modulated BDNF protein levels by increasing proBDNF and by declining mBDNF levels. Additionally, elevated levels of the full-length TrkB accompanied by a decreased level of the less-glycosylated TrkB protein were observed in middle-aged rats following DR, while in aged rats, DR amplified only the expression of the less-glycosylated form of TrkB. The levels of phosphorylated TrkB(Y816) were stable during aging regardless of feeding. Reduced levels of p75(NTR) were detected in both regions of middle-aged DR-fed animals, while a significant increase was measured in the cortex of aged DR-fed rats. These findings shed additional light on DR as a modulator of BDNF system revealing its disparate effects in middle-aged and aged animals. Given the importance of the proBDNF/BDNF circuit-level expression in different brain functions and various aspects of behavior, it is necessary to further elucidate the optimal duration of the applied dietary regimen with regard to the animal age in order to achieve its most favorable effects.


Assuntos
Envelhecimento/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Restrição Calórica , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Receptor trkB/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Masculino , Modelos Animais , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkB/genética , Fatores de Tempo
9.
J Neurosci Res ; 92(10): 1362-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24827783

RESUMO

Previously we observed that prolonged exposure to propofol anesthesia causes caspase-3- and calpain-mediated neuronal death in the developing brain. The present study examines the effects of propofol anesthesia on the expression of tumor necrosis factor-α (TNFα), pro-nerve growth factor (NGF), and their receptors in the cortex and the thalamus. We also investigated how propofol influences the expression of Akt and X-linked inhibitor of apoptosis (XIAP) expression, proteins that promote prosurvival pathways. Seven-day-old rats (P7) were exposed to propofol anesthesia lasting 2, 4, or 6 hr and killed 0, 4, 16, or 24 hr after anesthesia termination. The relative levels of mRNA and protein expression were estimated by RT-PCR and Western blot analysis, respectively. The treatments caused marked activation of TNFα and its receptor TNFR-1 and pro-NGF and p75(NTR) receptor expression. In parallel with the induction of these prodeath signals, we established that propofol anesthesia promotes increased expression of the prosurvival molecules pAkt and XIAP during the 24-hr postanesthesia period. These results show that different brain structures respond to propofol anesthesia with a time- and duration of exposure-dependent increase in proapoptotic signaling and with concomitant increases in activities of prosurvival proteins. We hypothesized that the fine balance between these opposing processes sustains homeostasis in the immature rat brain and prevents unnecessary damage after exposure to an injurious stimulus. The existence of this highly regulated process provides a time frame for potential therapeutic intervention directed toward suppressing the deleterious component of propofol anesthesia.


Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Proteína Oncogênica v-akt/metabolismo , Propofol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
10.
CNS Neurosci Ther ; 30(3): e14188, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-36971205

RESUMO

INTRODUCTION: In the present study, we assessed the effects of the hyper-harmonized-hydroxylated fullerene-water complex (3HFWC) on Alzheimer's disease (AD) neuropathological hallmarks in 5XFAD mice, an AD animal model. METHODS: The 3-week-old 5XFAD mice were exposed to 3HFWC water solution ad libitum for 3 months in the presymptomatic phase of pathology. The functional effects of the treatment were confirmed through near-infrared spectroscopy (NIRS) analysis through machine learning (ML) using artificial neural networks (ANNs) to classify the control and 3HFWC-treated brain tissue samples. The effects of 3HFWC treatment on amyloid-ß (Aß) accumulation, plaque formation, gliosis, and synaptic plasticity in cortical and hippocampal tissue were assessed. RESULTS: The 3HFWC treatment significantly decreased the amyloid-ß plaque load in specific parts of the cerebral cortex. At the same time, 3HFWC treatment did not induce the activation of glia (astrocytes and microglia) nor did it negatively affect synaptic protein markers (GAP-43, synaptophysin, and PSD-95). CONCLUSION: The obtained results point to the potential of 3HFWC, when applied in the presymptomatic phase of AD, to interfere with amyloid plaque formation without inducing AD-related pathological processes such as neuroinflammation, gliosis, and synaptic vulnerability.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Gliose , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Água , Modelos Animais de Doenças
11.
Biofactors ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975613

RESUMO

Insulin is known to be a key hormone in the regulation of peripheral glucose homeostasis, but beyond that, its effects on the brain are now undisputed. Impairments in insulin signaling in the brain, including changes in insulin levels, are thought to contribute significantly to declines in cognitive performance, especially during aging. As one of the most widely studied experimental interventions, dietary restriction (DR) is considered to delay the neurodegenerative processes associated with aging. Recently, however, data began to suggest that the onset and duration of a restrictive diet play a critical role in the putative beneficial outcome. Because the effects of DR on insulin signaling in the brain have been poorly studied, we decided to examine the effects of DR that differed in onset and duration: long-term DR (LTDR), medium-term DR (MTDR), and short-term DR (STDR) on the expression of proteins involved in insulin signaling in the hippocampus of 18- and 24-month-old male Wistar rats. We found that DR-induced changes in insulin levels in the brain may be independent of what happens in the periphery after restricted feeding. Significantly changed insulin content in the hippocampus, together with altered insulin signaling were found under the influence of DR, but the outcome was highly dependent on the onset and duration of DR.

12.
Front Nutr ; 10: 1330414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328686

RESUMO

Introduction: During fetal development, the proper development of neural and visual systems relies on the maternal supplementation of omega-3 fatty acids through placental transfer. Pregnant women are strongly advised to augment their diet with additional sources of omega-3, such as fish oil (FO). This supplementation has been linked to a reduced risk of preterm birth, pre-eclampsia, and perinatal depression. Recently, higher doses of omega-3 supplementation have been recommended for pregnant women. Considering that omega-3 fatty acids, particularly docosahexaenoic acid (DHA), play a crucial role in maintaining the delicate homeostasis required for the proper functioning of the retina and photoreceptors the effects of high-dose fish oil (FO) supplementation during pregnancy and lactation on the retina and retinal pigmented epithelium (RPE) in healthy offspring warrant better understanding. Methods: The fatty acid content and the changes in the expression of the genes regulating cholesterol homeostasis and DHA transport in the retina and RPE were evaluated following the high-dose FO supplementation. Results: Our study demonstrated that despite the high-dose FO treatment during pregnancy and lactation, the rigorous DHA homeostasis in the retina and RPE of the two-month-old offspring remained balanced. Another significant finding of this study is the increase in the expression levels of major facilitator superfamily domain-containing protein (Mfsd2a), a primary DHA transporter. Mfsd2a also serves as a major regulator of transcytosis during development, and a reduction in Mfsd2a levels poses a major risk for the development of leaky blood vessels. Conclusion: Impairment of the blood-retinal barrier (BRB) is associated with the development of numerous ocular diseases, and a better understanding of how to manipulate transcytosis in the BRB during development can enhance drug delivery through the BRB or contribute to the repair of central nervous system (CNS) barriers.

13.
Mech Ageing Dev ; 204: 111666, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331743

RESUMO

Although initially recognized as a universally beneficial approach for the prevention of age-related impairments, the outcome of calorie restriction (CR) is now known to depend on several factors, most notably the age of the subject at the CR commencement, and CR duration. We aimed to examine if and how CR affects anxiety-like behaviour when it is introduced at middle age and late middle age. In addition, as the dopaminergic system is one of the main neurotransmitter systems involved in controlling anxiety, we examined the expression of dopamine receptors (D1R, D2R) in the cortex, striatum, and mesencephalon of male Wistar rats of varying ages. The study was performed on rats fed ad libitum (AL) or exposed to calorie restriction (60% of AL intake). Open field and light-dark tests were used to study anxiety-like behaviour, while PCR and Western blot were used to examine the expression of dopamine receptors. Calorie restriction implemented at middle-age led to variable outcomes on anxiety-like behaviour, while CR implemented at late middle age increased anxiety and decreased the availability of D2R levels in the cortex and mesencephalon. Taken together, these results advise caution when implementing calorie restriction late in life.


Assuntos
Envelhecimento , Ansiedade , Restrição Calórica , Animais , Masculino , Ratos , Ratos Wistar , Receptores Dopaminérgicos/metabolismo
14.
Brain Sci ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36291231

RESUMO

Glucocorticoids are the most potent anti-inflammatory agents known. Limited in vivo data are available to characterize the mechanism underlying their cognitive side effects and transient occurrence of steroid psychosis. Cholesterol is important for proper neurotransmission and brain plasticity, and disruption of its homeostasis in the brain has been closely associated with memory decline during aging and in age-related neurodegenerative disorders. In the present study, we assessed the direct effects of dexamethasone, a potent synthetic glucocorticoid, on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24S-hydroxylase (CYP46A1), major enzymes involved in cholesterol synthesis, metabolism, and excretion, respectively. The effects of the dexamethasone were examined during aging, in the cortex and hippocampus of 6-, 12- and 18-month-old rats, and following long-term food restriction (FR). The most prominent change observed was the age-related decrease in ApoE mRNA regardless of the food regimen applied. In animals kept on FR, this decrease was accompanied by an increase in the mRNA expression of HMGCR and CYP46A1. The present study also demonstrates that food restriction reversed most of the dexamethasone-induced changes in the expression of genes involved in regulation of cholesterol homeostasis in aging rats, in a region-specific manner.

15.
Mech Ageing Dev ; 207: 111726, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998821

RESUMO

The formation of amyloid-ß peptides (Aß), that accumulate in Alzheimer's disease (AD) brains, involves proteolytic processing of the amyloid precursor protein (APP) firstly by ß-secretase (BACE1). Since BACE1 cleaves a plethora of other substrates, in this work we investigated whether the proteolysis and/or distribution of other BACE1 substrates, such as seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), is altered in AD. To test this we used 5xFAD mouse model brains that show an early accumulation of Aß plaques already at 2-months of age. Here we show for the first time that accumulation of BACE1 in peri-plaque regions and its enhanced levels in AD brains does not affect proteolysis of BACE1 substrates other than APP, such as Sez6 and Sez6L. We observed altered distribution of Sez6 and Sez6L in the area of Aß plaques in 5xFAD brains which is distinct to that of APP, BACE1 and/or LAMP1, suggesting different localization and/or function of these BACE1 substrates. While it is necessary to further elucidate the potential role that this may play in the course of AD, it is likely that Aß-targeted therapies may have beneficial effects against accumulation and/or altered distribution of BACE1 and its substrates, in addition to APP.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/metabolismo , Convulsões/metabolismo
16.
J Gerontol A Biol Sci Med Sci ; 77(5): 947-955, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34957511

RESUMO

The current study aims to determine the potential benefits of calorie restriction (CR), one of the most promising paradigms for life span and healthspan extension, on cognitive performances in female Wistar rats during aging. As a measure of a healthspan, we evaluated the effects of different onset and duration of CR on frailty level. Female Wistar rats were exposed to either ad libitum (AL) or CR (60% of AL daily intake) food intake during aging. Two different CR protocols were used, life-long CR with an early-onset that started at the adult stage (6 months) and 3-month-long CR, started at the middle (15 months) and late-middle (21 months) age, thus defined as a late-onset CR. The effects of CR were evaluated using open-field, Y-maze, and novel object recognition tests. We broadened 2 tools for frailty assessment currently in use for experimental animals, and in alignment with our previous study, we created a physical-cognitive frailty tool that combines both physical and cognitive performances. Our results clearly showed that CR effects are highly dependent on CR duration and onset. While a life-long restriction with an early-onset has been proven as protective and beneficial, short-term restriction introduced at late age significantly worsens an animal's behavior and frailty. These results complement our previous study conducted in males and contribute to the understanding of sex differences in a response to CR during aging.


Assuntos
Restrição Calórica , Fragilidade , Envelhecimento/fisiologia , Animais , Cognição , Feminino , Longevidade/fisiologia , Masculino , Ratos , Ratos Wistar
17.
Artigo em Inglês | MEDLINE | ID: mdl-33238164

RESUMO

Reduction in direct social contact with peers during early adolescence is thought to be a risk factor for an increase in depressive symptoms, but there is still no clear evidence to suggest early behavioral manifestations and their association with the later outcome of social distancing during this period. To address this question, we used social isolation paradigm in peripubertal rats as the rodent model of adolescence. The litter was an experimental unit. On postnatal day 29, each litter gave group-housed and single-housed males, which were reared and tested one week and two weeks thereafter. Psychomotor/emotional response to novelty in exploration-based tasks, behavioral and neuronal responses to the drug reward (D-amphetamine), motivation/hedonic behavior, physiological and response to physiological stress were examined. Social isolation in peripubertal rats manifested through: hyper-reactivity/agitation and the state anxiety/risk-taking at an early stage; reduced behavioral response to D-amphetamine and altered neural processing of this stimulus, at a later stage; consummatory hypohedonia that deepened over time without changing the motivation to eat; unchanged body weight gain and resting blood corticosterone, cortisol and glucose levels over time; altered blood biochemistry (silenced corticosterone and increased glucose) due to overnight fasting only at an early stage. Our results highlight that the outcome of reduced direct social contact with peers during peripuberty is dynamic, with the cluster of atypical early symptoms that evolve into the syndrome that is delicate for assessment through routinely measurable behavior and biomarkers of stress, but with progressive consummatory hypohedonia and unaffected motivation to eat as stable marks.


Assuntos
Dextroanfetamina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Maturidade Sexual/genética , Isolamento Social , Estresse Psicológico/tratamento farmacológico , Animais , Corticosterona/sangue , Emoções/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar , Estresse Psicológico/psicologia
18.
Nutrients ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960078

RESUMO

Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11ß-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/metabolismo , Corticosterona/metabolismo , Privação de Alimentos , Receptores de Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Neuroproteção , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Tempo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Curr Alzheimer Res ; 18(1): 25-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33761860

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive decline and total brain atrophy. Despite the substantial scientific effort, the pathological mechanisms underlying neurodegeneration in AD are currently unknown. In most studies, amyloid ß peptide has been considered the key pathological change in AD. However, numerous Aß-targeting treatments have failed in clinical trials. This implies the need to shift the research focus from Aß to other pathological features of the disease. OBJECTIVE: The aim of this study was to examine the interplay between mitochondrial dysfunction, oxidative stress and blood-brain barrier (BBB) disruption in AD pathology, using a novel approach that involves the application of electron paramagnetic resonance (EPR) spectroscopy. METHODS: In vivo and ex vivo EPR spectroscopy using two spin probes (aminoxyl radicals) exhibiting different cell-membrane and BBB permeability were employed to assess BBB integrity and brain tissue redox status in the 5xFAD mouse model of AD. In vivo spin probe reduction decay was analyzed using a two-compartment pharmacokinetic model. Furthermore, 15 K EPR spectroscopy was employed to investigate the brain metal content. RESULTS: This study has revealed an altered brain redox state, BBB breakdown, as well as ROS-mediated damage to mitochondrial iron-sulfur clusters, and up-regulation of MnSOD in the 5xFAD model. CONCLUSION: The EPR spin probes were shown to be excellent in vivo reporters of the 5xFAD neuronal tissue redox state, as well as the BBB integrity, indicating the importance of in vivo EPR spectroscopy application in preclinical studies of neurodegenerative diseases.

20.
Free Radic Biol Med ; 162: 88-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279620

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by a progressive decline in a variety of cognitive and non-cognitive functions. The amyloid beta protein cascade hypothesis places the formation of amyloid beta protein aggregates on the first position in the complex pathological cascade leading to neurodegeneration, and therefore AD might be considered to be a protein-misfolding disease. The Ubiquitin Proteasome System (UPS), being the primary protein degradation mechanism with a fundamental role in the maintenance of proteostasis, has been identified as a putative therapeutic target to delay and/or to decelerate the progression of neurodegenerative disorders that are characterized by accumulated/aggregated proteins. The purpose of this study was to test if the activation of proteasome in vivo can alleviate AD pathology. Specifically by using two compounds with complementary modes of proteasome activation and documented antioxidant and redox regulating properties in the 5xFAD transgenic mice model of AD, we ameliorated a number of AD related deficits. Shortly after proteasome activation we detected significantly reduced amyloid-beta load correlated with improved motor functions, reduced anxiety and frailty level. Essentially, to our knowledge this is the first report to demonstrate a dual activation of the proteasome and its downstream effects. In conclusion, these findings open up new directions for future therapeutic potential of proteasome-mediated proteolysis enhancement.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fenótipo , Complexo de Endopeptidases do Proteassoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa