Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(52): 18051-18064, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33082140

RESUMO

Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 µg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 µg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98.


Assuntos
Remodelação das Vias Aéreas , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Fator de Crescimento Neural/metabolismo , Nicotina/toxicidade , Hipersensibilidade Respiratória/patologia , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Agonistas Nicotínicos/toxicidade , PPAR gama , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo
2.
Am J Respir Cell Mol Biol ; 58(5): 648-657, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29182484

RESUMO

Pulmonary hypertension (PH) is a progressive disorder that causes significant morbidity and mortality despite existing therapies. PH pathogenesis is characterized by metabolic derangements that increase pulmonary artery smooth muscle cell (PASMC) proliferation and vascular remodeling. PH-associated decreases in peroxisome proliferator-activated receptor γ (PPARγ) stimulate PASMC proliferation, and PPARγ in coordination with PPARγ coactivator 1α (PGC1α) regulates mitochondrial gene expression and biogenesis. To further examine the impact of decreases in PPARγ expression on human PASMC (HPASMC) mitochondrial function, we hypothesized that depletion of either PPARγ or PGC1α perturbs mitochondrial structure and function to stimulate PASMC proliferation. To test this hypothesis, HPASMCs were exposed to hypoxia and treated pharmacologically with the PPARγ antagonist GW9662 or with siRNA against PPARγ or PGC1α for 72 hours. HPASMC proliferation (cell counting), target mRNA levels (qRT-PCR), target protein levels (Western blotting), mitochondria-derived H2O2 (confocal immunofluorescence), mitochondrial mass and fragmentation, and mitochondrial bioenergetic profiling were determined. Hypoxia or knockdown of either PPARγ or PGC1α increased HPASMC proliferation, enhanced mitochondria-derived H2O2, decreased mitochondrial mass, stimulated mitochondrial fragmentation, and impaired mitochondrial bioenergetics. Taken together, these findings provide novel evidence that loss of PPARγ diminishes PGC1α and stimulates derangements in mitochondrial structure and function that cause PASMC proliferation. Overexpression of PGC1α reversed hypoxia-induced HPASMC derangements. This study identifies additional mechanistic underpinnings of PH, and provides support for the notion of activating PPARγ as a novel therapeutic strategy in PH.


Assuntos
Hipertensão Pulmonar/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , PPAR gama/metabolismo , Anilidas/farmacologia , Animais , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/prevenção & controle , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA
3.
Am J Respir Cell Mol Biol ; 56(1): 131-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612006

RESUMO

Pulmonary hypertension (PH), a serious complication of sickle cell disease (SCD), causes significant morbidity and mortality. Although a recent study determined that hemin release during hemolysis triggers endothelial dysfunction in SCD, the pathogenesis of SCD-PH remains incompletely defined. This study examines peroxisome proliferator-activated receptor γ (PPARγ) regulation in SCD-PH and endothelial dysfunction. PH and right ventricular hypertrophy were studied in Townes humanized sickle cell (SS) and littermate control (AA) mice. In parallel studies, SS or AA mice were gavaged with the PPARγ agonist, rosiglitazone (RSG), 10 mg/kg/day, or vehicle for 10 days. In vitro, human pulmonary artery endothelial cells (HPAECs) were treated with vehicle or hemin for 72 hours, and selected HPAECs were treated with RSG. SS mice developed PH and right ventricular hypertrophy associated with reduced lung levels of PPARγ and increased levels of microRNA-27a (miR-27a), v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1), endothelin-1 (ET-1), and markers of endothelial dysfunction (platelet/endothelial cell adhesion molecule 1 and E selectin). HPAECs treated with hemin had increased ETS1, miR-27a, ET-1, and endothelial dysfunction and decreased PPARγ levels. These derangements were attenuated by ETS1 knockdown, inhibition of miR-27a, or PPARγ overexpression. In SS mouse lung or in hemin-treated HPAECs, activation of PPARγ with RSG attenuated reductions in PPARγ and increases in miR-27a, ET-1, and markers of endothelial dysfunction. In SCD-PH pathogenesis, ETS1 stimulates increases in miR-27a levels that reduce PPARγ and increase ET-1 and endothelial dysfunction. PPARγ activation attenuated SCD-associated signaling derangements, suggesting a novel therapeutic approach to attenuate SCD-PH pathogenesis.


Assuntos
Anemia Falciforme/patologia , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , PPAR gama/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Anemia Falciforme/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hemina/farmacologia , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Ligantes , Camundongos , Modelos Biológicos , Artéria Pulmonar/patologia , Rosiglitazona , Sístole/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L371-L383, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522568

RESUMO

Pulmonary hypertension (PH) is a progressive disorder whose cellular pathogenesis involves enhanced smooth muscle cell (SMC) proliferation and resistance to apoptosis signals. Existing evidence demonstrates that the tumor suppressor programmed cell death 4 (PDCD4) affects patterns of cell growth and repair responses in the systemic vasculature following experimental injury. In the current study, the regulation PDCD4 and its functional effects on growth and apoptosis susceptibility in pulmonary artery smooth muscle cells were explored. We previously demonstrated that pharmacological activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) attenuated hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting the expression and mitogenic functions of microRNA-21 (miR-21). In the current study, we hypothesize that PPARγ stimulates PDCD4 expression and HPASMC apoptosis by inhibiting miR-21. Our findings demonstrate that PDCD4 is reduced in the mouse lung upon exposure to chronic hypoxia (10% O2 for 3 wk) and in hypoxia-exposed HPASMCs (1% O2). HPASMC apoptosis was reduced by hypoxia, by miR-21 overexpression, or by siRNA-mediated PPARγ and PDCD4 depletion. Activation of PPARγ inhibited miR-21 expression and resultant proliferation, while restoring PDCD4 levels and apoptosis to baseline. Additionally, pharmacological activation of PPARγ with rosiglitazone enhanced PDCD4 protein expression and apoptosis in a dose-dependent manner as demonstrated by increased annexin V detection by flow cytometry. Collectively, these findings demonstrate that PPARγ confers growth-inhibitory signals in hypoxia-exposed HPASMCs through suppression of miR-21 and the accompanying derepression of PDCD4 that augments HPASMC susceptibility to undergo apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Anexina A5/genética , Anexina A5/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/genética , Artéria Pulmonar/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinedionas/farmacologia
5.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L599-L608, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130258

RESUMO

Pulmonary hypertension (PH) is characterized by increased pulmonary vascular resistance, pulmonary vascular remodeling, and increased pulmonary vascular pressures that often result in right ventricular dysfunction, leading to right heart failure. Evidence suggests that reactive oxygen species (ROS) contribute to PH pathogenesis by altering pulmonary vascular cell proliferation and intracellular signaling pathways. However, the role of mitochondrial antioxidants and oxidant-derived stress signaling in the development of hypoxia-induced PH is largely unknown. Therefore, we examined the role of the major mitochondrial redox regulator thioredoxin 2 (Trx2). Levels of Trx2 mRNA and protein were examined in human pulmonary arterial endothelial cells (HPAECs) and smooth muscle cells (HPASMCs) exposed to hypoxia, a common stimulus for PH, for 72 h. Hypoxia decreased Trx2 mRNA and protein levels. In vitro overexpression of Trx2 reduced hypoxia-induced H2O2 production. The effects of increased Trx2 protein level were examined in transgenic mice expressing human Trx2 (TghTrx2) that were exposed to hypoxia (10% O2) for 3 wk. TghTrx2 mice exposed to hypoxia had exacerbated increases in right ventricular systolic pressures, right ventricular hypertrophy, and increased ROS in the lung tissue. Trx2 overexpression did not attenuate hypoxia-induced increases in Trx2 oxidation or Nox4 expression. Expression of a dominant negative C93S Trx2 mutant that mimics Trx2 oxidation exacerbated hypoxia-induced increases in HPASMC H2O2 levels and cell proliferation. In conclusion, Trx2 overexpression failed to attenuate hypoxia-induced HPASMC proliferation in vitro or hypoxia-induced PH in vivo. These findings indicate that strategies to enhance Trx2 expression are unlikely to exert therapeutic effects in PH pathogenesis.


Assuntos
Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Am J Respir Cell Mol Biol ; 54(1): 136-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26098770

RESUMO

Endothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo. In PAECs isolated from patients with pulmonary arterial hypertension, microRNA (miR)-98 expression was reduced, and ET-1 protein levels and proliferation were increased. Similarly, hypoxia reduced miR-98 and increased ET-1 levels and PAEC proliferation in vitro. In vivo, hypoxia reduced miR-98 expression and increased ET-1 and proliferating cell nuclear antigen (PCNA) levels in mouse lung, derangements that were aggravated by treatment with the vascular endothelial growth factor receptor antagonist Sugen5416. Reporter assays confirmed that miR-98 binds directly to the ET-1 3'-untranslated region. Compared with littermate control mice, miR-98 levels were reduced and ET-1 and PCNA expression were increased in lungs from endothelial-targeted PPARγ knockout mice, whereas miR-98 levels were increased and ET-1 and PCNA expression was reduced in lungs from endothelial-targeted PPARγ-overexpression mice. Gain or loss of PPARγ function in PAECs in vitro confirmed that alterations in PPARγ were sufficient to regulate miR-98, ET-1, and PCNA expression. Finally, PPARγ activation with rosiglitazone regimens that attenuated hypoxia-induced PH in vivo and human PAEC proliferation in vitro restored miR-98 levels. The results of this study show that PPARγ regulates miR-98 to modulate ET-1 expression and PAEC proliferation. These results further clarify molecular mechanisms by which PPARγ participates in PH pathogenesis and therapy.


Assuntos
Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotelina-1/genética , Regulação da Expressão Gênica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/patologia , Indóis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , PPAR gama/agonistas , PPAR gama/deficiência , PPAR gama/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis , Interferência de RNA , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Transfecção , Remodelação Vascular
7.
Am J Respir Cell Mol Biol ; 47(5): 718-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22904198

RESUMO

Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) contribute to hypoxia-induced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxia-exposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O(2)) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPARγ, and transforming growth factor (TGF)ß1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O(2)) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPARγ and TGF-ß1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H(2)O(2) release, proliferation, and TGF-ß1 expression and blunted reductions in PPARγ in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-ß1 and reductions in PPARγ expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxia-induced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Artéria Pulmonar/patologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Hipóxia Celular , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/fisiologia , Endotélio Vascular/patologia , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pirazóis/uso terapêutico , Pirazolonas , Piridinas/uso terapêutico , Piridonas , Interferência de RNA , Rosiglitazona , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular/efeitos dos fármacos
8.
Matrix Biol ; 111: 53-75, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671866

RESUMO

Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.


Assuntos
Metabolismo Energético , Hialuronan Sintases , Ácido Hialurônico , Hipertensão Pulmonar , Regiões 3' não Traduzidas/genética , Animais , Proliferação de Células , Metabolismo Energético/genética , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Hipertensão Pulmonar/enzimologia , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/enzimologia
9.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L881-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21926265

RESUMO

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O(2)) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 µM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for 3 wk with or without gavage with RSG (10 mg·kg(-1)·day(-1)) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.


Assuntos
Endotelina-1/metabolismo , PPAR gama/agonistas , Transdução de Sinais , Tiazolidinedionas/farmacologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotelina-1/genética , Enzimas Conversoras de Endotelina , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Artéria Pulmonar/patologia , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Rosiglitazona
10.
Genome ; 54(2): 128-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21326369

RESUMO

Genetic maps provide an important genomic resource of basic and applied significance. Spruce (Picea) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5-24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL-MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.


Assuntos
Quimera , Mapeamento Cromossômico , Ligação Genética , Picea/genética , Segregação de Cromossomos , Primers do DNA/genética , DNA de Plantas/genética , Genoma de Planta , Genótipo , Repetições de Microssatélites , Polimorfismo Genético
11.
Blood Adv ; 5(2): 399-413, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496741

RESUMO

Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.


Assuntos
Anemia Falciforme , Hipertensão Pulmonar , Anemia Falciforme/genética , Animais , Proliferação de Células , Células Endoteliais , Camundongos , NF-kappa B , PPAR gama/genética
12.
Physiol Genomics ; 42(1): 42-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20332185

RESUMO

We studied the gene expression profile during cardiac hypertrophy induced by angiotensin (ANG) II in wild-type mice and the influence of LOX-1 deletion on the gene expression profile. Wild-type and LOX-1 knockout mice were given saline or ANG II infusion for 4 wk. The saline-treated LOX-1 knockout mice showed upregulation of several genes including Ddx3y and Eif2s3y. ANG II infusion enhanced expression of genes known to be associated with cardiac remodeling, such as Agt, Ace, Timp4, Fstl, and Tnfrst12a, as well as oxidant stress-related genes Gnaq, Sos1, and Rac1. Some other strongly upregulated genes identified in this study have not been previously associated with LOX-1 deletion and/or hypertension. To confirm these observations with ANG II infusion and LOX-1 deletion, cultured HL-1 mouse cardiomyocytes were exposed to ANG II or transfected with pCI-neo/LOX-1, which resulted in severalfold increase in reactive oxygen species generation, upregulation of ANG II type 1 (AT(1)) receptor, and cardiomyocyte growth. Quantitative PCR analysis of these treated cardiomyocytes confirmed upregulation of many of the genes identified in the in vivo study. This study provides the first set of data on the gene expression profiling of cardiac tissue treated with ANG II and expands on the important role of LOX-1 in cardiac response to ANG II.


Assuntos
Angiotensina II/farmacologia , Genômica , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Depuradores Classe E/deficiência , Animais , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Coração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe E/genética , Vasoconstritores/farmacologia
13.
BMC Genomics ; 11: 515, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20868486

RESUMO

BACKGROUND: Genetic maps provide an important genomic resource for understanding genome organization and evolution, comparative genomics, mapping genes and quantitative trait loci, and associating genomic segments with phenotypic traits. Spruce (Picea) genomics work is quite challenging, mainly because of extremely large size and highly repetitive nature of its genome, unsequenced and poorly understood genome, and the general lack of advanced-generation pedigrees. Our goal was to construct a high-density genetic linkage map of black spruce (Picea mariana, 2n = 24), which is a predominant, transcontinental species of the North American boreal and temperate forests, with high ecological and economic importance. RESULTS: We have developed a near-saturated and complete genetic linkage map of black spruce using a three-generation outbred pedigree and amplified fragment length polymorphism (AFLP), selectively amplified microsatellite polymorphic loci (SAMPL), expressed sequence tag polymorphism (ESTP), and microsatellite (mostly cDNA based) markers. Maternal, paternal, and consensus genetic linkage maps were constructed. The maternal, paternal, and consensus maps in our study consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal map had 816 and the paternal map 743 markers distributed over 12 linkage groups each. The consensus map consisted of 1,111 markers distributed over 12 linkage groups, and covered almost the entire (> 97%) black spruce genome. The mapped markers included 809 AFLPs, 255 SAMPL, 42 microsatellites, and 5 ESTPs. Total estimated length of the genetic map was 1,770 cM, with an average of one marker every 1.6 cM. The maternal, paternal and consensus genetic maps aligned almost perfectly. CONCLUSION: We have constructed the first high density to near-saturated genetic linkage map of black spruce, with greater than 97% genome coverage. Also, this is the first genetic map based on a three-generation outbred pedigree in the genus Picea. The genome length in P. mariana is likely to be about 1,800 cM. The genetic maps developed in our study can serve as a reference map for various genomics studies and applications in Picea and Pinaceae.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Picea/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta/genética , Repetições de Microssatélites/genética , Distribuição de Poisson
14.
J Cardiovasc Pharmacol ; 55(2): 176-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19935077

RESUMO

BACKGROUND: Curcumin, a natural polyphenolic compound, has been shown to reduce cardiomyocyte growth. Angiotensin II type 1 receptor (AT1R) and lectin-like oxidized low density lipoprotein (ox-LDL) receptor-1 (LOX-1) are major stimuli for cardiomyocyte growth via activation of oxidant signals. We postulated that curcumin may reduce Ang II-mediated cardiomyocyte growth via AT1R and LOX-1 inhibition. METHODS: Adult mouse cardiomyocytes (HL-1) were incubated overnight in serum-free medium, and then treated with solvents or curcumin, the AT1R inhibitor losartan or anti-LOX-1 antibody for 3 hours, and the cells were then stimulated with Ang II. We measured cardiomyocyte growth, and associated intracellular redox signals using reverse transcriptase-polymerase chain reaction and quantitative real-time RT-PCR. We also examined the effect of curcumin on cardiomyocyte biology with forced overexpression of LOX-1 gene. RESULTS: Curcumin (5-10 microM), losartan, and anti-LOX-1 antibody markedly attenuated Ang II-mediated oxidant stress, and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nuclear factor-kappaB (NF-kappaB). Attenuation of redox state by curcumin resulted in abrogation of Ang II-mediated cardiomyocyte growth and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) genes. Curcumin also reduced Ang II-mediated upregulation of AT1R and LOX-1. The forced upregulation of LOX-1 enhanced the expression of genes for AT1R, ANP, and BNP, and curcumin pretreatment reduced LOX-1 and AT1R expression and LOX-1-mediated increase in hypertrophy markers. CONCLUSIONS: Curcumin attenuates Ang II-mediated cardiomyocyte growth by inhibiting LOX-1 and AT1R expression and suppressing the heightened intracellular redox state.


Assuntos
Angiotensina II/fisiologia , Crescimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Inibidores do Crescimento/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Receptores Depuradores Classe E/antagonistas & inibidores , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Células Cultivadas , Camundongos , Miócitos Cardíacos/citologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores Depuradores Classe E/biossíntese
15.
J Cardiovasc Pharmacol ; 55(4): 417-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20422739

RESUMO

BACKGROUND: Curcumin, a natural polyphenolic compound, has been shown to reduce cardiomyocyte growth. Angiotensin II type 1 receptor (AT1R) and lectin-like oxidized low density lipoprotein (ox-LDL) receptor-1 (LOX-1) are major stimuli for cardiomyocyte growth via activation of oxidant signals. We postulated that curcumin may reduce Ang II-mediated cardiomyocyte growth via AT1R and LOX-1 inhibition. METHODS: Adult mouse cardiomyocytes (HL-1) were incubated overnight in serum-free medium, and then treated with solvents or curcumin, the AT1R inhibitor losartan or anti-LOX-1 antibody for 3 hours, and the cells were then stimulated with Ang II. We measured cardiomyocyte growth, and associated intracellular redox signals using reverse transcriptase-polymerase chain reaction and quantitative real-time RT-PCR. We also examined the effect of curcumin on cardiomyocyte biology with forced overexpression of LOX-1 gene. RESULTS: Curcumin (5-10 microM), losartan, and anti-LOX-1 antibody markedly attenuated Ang II-mediated oxidant stress, and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nuclear factor-kappaB (NF-kappaB). Attenuation of redox state by curcumin resulted in abrogation of Ang II-mediated cardiomyocyte growth and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) genes. Curcumin also reduced Ang II-mediated upregulation of AT1R and LOX-1. The forced upregulation of LOX-1 enhanced the expression of genes for AT1R, ANP, and BNP, and curcumin pretreatment reduced LOX-1 and AT1R expression and LOX-1-mediated increase in hypertrophy markers. CONCLUSIONS: Curcumin attenuates Ang II-mediated cardiomyocyte growth by inhibiting LOX-1 and AT1R expression and suppressing the heightened intracellular redox state.


Assuntos
Angiotensina II/farmacologia , Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Miócitos Cardíacos/citologia , Receptores Depuradores Classe E/genética , Angiotensina II/administração & dosagem , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Fator Natriurético Atrial/genética , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Losartan/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NF-kappa B/genética , Peptídeo Natriurético Encefálico/genética , Estresse Oxidativo/efeitos dos fármacos , Subunidades Proteicas/genética , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptores Depuradores Classe E/imunologia , Transdução de Sinais/genética , Transfecção
16.
Sci Rep ; 10(1): 11696, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678115

RESUMO

Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Infecções por HIV/complicações , HIV-1/genética , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/complicações , Tropismo Viral/genética , Adulto , Animais , Fármacos Anti-HIV/uso terapêutico , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Genótipo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Hipertensão Arterial Pulmonar/virologia , Artéria Pulmonar/citologia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Receptores CXCR4/metabolismo
17.
Kidney Int ; 76(5): 521-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553911

RESUMO

Angiotensin II upregulates the expression of LOX-1, a recently identified oxidized low-density lipoprotein receptor controlled by redox state which in turn upregulates angiotensin II activity on its activation. To test whether interruption of this positive feedback loop might reduce angiotensin II-induced hypertension and subsequent renal injury, we studied LOX-1 knockout mice. After infusion with angiotensin II for 4 weeks systolic blood pressure gradually increased in the wild-type mice; this rise was significantly attenuated in the LOX-1 knockout mice. Along with the rise in systolic blood pressure, renal function (blood urea nitrogen and creatinine) decreased in the wild-type mice, but the deterioration of function was significantly less in the LOX-1 knockout mice. Glomerulosclerosis, arteriolar sclerosis, tubulointerstitial damage, and renal collagen accumulation were all significantly less in the LOX-1 knockout mice. The reduction in collagen formation was accompanied by a decrease in connective tissue growth factor mRNA, angiotensin type 1 receptor expression, and phosphorylation of p38 and p44/42 mitogen-activated protein kinases. Expression of endothelial nitric oxide synthase was increased in the kidneys of the LOX-1 knockout mice compared to the wild-type mice. Overall, our study suggests that LOX-1 is a key modulator in the development of angiotensin II-induced hypertension and subsequent renal damage.


Assuntos
Angiotensina III/toxicidade , Rim/patologia , Receptores Depuradores Classe E/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fibrose , Hipertensão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Receptor Tipo 1 de Angiotensina/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
18.
Biochem Biophys Res Commun ; 379(2): 395-9, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19126408

RESUMO

LOX-1, a cell surface lectin-like receptor, is upregulated by oxidized low-density lipoprotein (ox-LDL) and angiotensin II (Ang II), and plays an important role in host defense. The specific C-type lectin domain on LOX-1 is essential for ox-LDL binding and internalization, generation of oxidant species and eliciting immune response. Here, we show that LOX-1 deletion alters genes that relate to immune response. Microarray (and qPCR) analysis of cardiac tissues showed downregulated expression of several immunoglobulins (Igk-V8, Igk-C, Igh-6, Igj, Ighg, Igh, and Igl-V1) in the LOX-1 knockout (KO) mice [p<0.05 vs. the wild-type (WT) mice]. The expression of these immunoglobulins was upregulated several-fold in the LOX-1 KO mice hearts when these mice were infused with Ang II (p<0.05, vs. WT mice). Importantly, cultured mouse HL-1 cardiomyocytes expressed these immunoglobulins, and pretreatment of cardiomyocytes with a specific anti-LOX-1 antibody enhanced the generation of immunoglobulins upon subsequent exposure to Ang II. These observations mirrored the data obtained from WT and LOX-1 KO mice hearts in the resting state and following Ang II infusion. This study provides first set of data on immunoglobulin expression in cardiac tissues of WT and LOX-1 KO mice and in cultured HL-1 cardiomyocytes, and demonstrates that LOX-1 inactivation leads to upregulation of immunoglobulins in cardiomyocytes upon challenge with Ang II.


Assuntos
Imunoglobulinas/biossíntese , Miócitos Cardíacos/imunologia , Receptores Depuradores Classe E/genética , Angiotensina II/farmacologia , Animais , Regulação para Baixo , Deleção de Genes , Imunidade/genética , Imunoglobulinas/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Depuradores Classe E/metabolismo , Regulação para Cima
19.
Biochem Biophys Res Commun ; 387(3): 543-7, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19615978

RESUMO

Statins, inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, have been shown to induce both angiogenic and angiostatic responses. We attempted to resolve this controversy by studying the effects of two different statins, rosuvastatin and simvastatin, in two different assay systems. In the matrigel angiogenesis assay, both statins enhanced tube formation by human umbilical vein endothelial cells (HUVECs, p<0.01 vs. control). In the ex vivo mouse aortic ring sprouting assay, both statins virtually abolished new vessel formation (p<0.01). As a basic difference between the two models of angiogenesis is dispersed state of endothelial cells vs. compact monolayer, we analyzed influence of statins on endothelial junction proteins. RT-PCR analysis and cytoimmunostaining of HUVECs treated with simvastatin revealed increased expression of VE-cadherin (p<0.05). The blockade of VE-cadherin with a specific antibody reversed simvastatin-induced tube formation (p<0.002). These data suggest that statins through VE-cadherin stimulation modulate cell-cell adhesion and diminish the ability of cells to proliferate and migrate. The observations of reduced angiogenesis in the intact vessel may relate to anti-atherosclerotic and anti-cancer effects of statins, and provide a feasible explanation for conflicting data under different experimental conditions.


Assuntos
Inibidores da Angiogênese/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fluorbenzenos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pirimidinas/farmacologia , Sinvastatina/farmacologia , Sulfonamidas/farmacologia , Animais , Antígenos CD/biossíntese , Aorta/citologia , Aorta/efeitos dos fármacos , Caderinas/antagonistas & inibidores , Caderinas/biossíntese , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Rosuvastatina Cálcica , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos
20.
BMC Microbiol ; 9: 79, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19389243

RESUMO

BACKGROUND: Adeno-associated virus (AAV) type 2 is an important virus due to its use as a safe and effective human gene therapy vector and its negative association with certain malignancies. AAV, a dependo-parvovirus, autonomously replicates in stratified squamous epithelium. Such tissue occurs in the nasopharynx and anogenitals, from which AAV has been clinically isolated. Related autonomous parvoviruses also demonstrate cell tropism and preferentially replicate in oncogenically transformed cells. Combining these two attributes of parvovirus tropism, squamous and malignant, we assayed if AAV might replicate in squamous cervical carcinoma cell isolates. RESULTS: Three primary isolates (PT1-3) and two established cervical cancer cell lines were compared to normal keratinocytes (NK) for their ability to replicate AAV. One isolate, PT3, allowed for high levels of AAV DNA replication and virion production compared to others. In research by others, four cellular components are known required for in vitro AAV DNA replication: replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and DNA polymerase delta (POLD1). Thus, we examined PT3 cells for expression of these components by DNA microarray and real-time quantitative PCR. All four components were over-expressed in PT3 over two representative low-permissive cell isolates (NK and PT1). However, this super-permissiveness did not result in PT3 cell death by AAV infection. CONCLUSION: These data, for the first time, provide evidence that these four cellular components are likely important for AAV in vivo DNA replication as well as in vitro. These data also suggest that PT3 will be a useful reagent for investigating the AAV-permissive transcriptome and AAV anti-cancer effect.


Assuntos
DNA Polimerase III/metabolismo , Dependovirus/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação C/metabolismo , Neoplasias do Colo do Útero/virologia , Linhagem Celular Tumoral , DNA Polimerase III/genética , Replicação do DNA , Dependovirus/genética , Feminino , Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Parvoviridae/genética , Antígeno Nuclear de Célula em Proliferação/genética , RNA Neoplásico/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação C/genética , Neoplasias do Colo do Útero/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa