Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Chem ; 94(8): 3535-3542, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061345

RESUMO

With the growth of drug-facilitated crimes, prevention has become increasingly important. Although various drug detection technologies exist, most focus on postconsumption detection. However, the prevention of drug-facilitated crimes requires technology for the quick and easy detection of amphetamine-type stimulants (ATSs) before ingestion. Herein, drug screening kits (DSKs) were developed for the simple detection of ATSs in drinks. The DSKs consisted of polydiacetylene nanofiber-based paper sensors fabricated by electrospinning with 10,12-pentacosadiynoic acid (PCDA) and PCDA-dopamine as sensing materials that can bind ATSs via hydrogen bonding and π-π interactions. Dropping a drink on the DSK provided an immediate visual indication of the presence of ATSs. When ATSs were present in the drink, the color of the DSK clearly changed from blue to red, with the increase in red intensity being more than twofold greater than that observed when water alone was tested. Notably, the result could be confirmed by the naked eye without any analytical instrumentation. A color change indicating the presence of ATSs was successfully observed in various alcoholic and nonalcoholic drinks. These results indicate the potential of DSKs for preventing drug-facilitated crimes caused by unwanted drug intake.


Assuntos
Estimulantes do Sistema Nervoso Central , Nanofibras , Anfetamina , Colorimetria/métodos
2.
Chem Eng J ; 442: 136143, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35382003

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a pandemic of acute respiratory disease, namely coronavirus disease (COVID-19). This disease threatens human health and public safety. Early diagnosis, isolation, and prevention are important to suppress the outbreak of COVID 19 given the lack of specific antiviral drugs to treat this disease and the emergence of various variants of the virus that cause breakthrough infections even after vaccine administration. Simple and prompt testing is paramount to preventing further spread of the virus. However, current testing methods, namely RT-PCR, is time-consuming. Binding of the SARS-CoV-2 spike (S) glycoprotein to human angiotensin-converting enzyme 2 (hACE2) receptor plays a pivotal role in host cell entry. In the present study, we developed a hACE2 mimic peptide beacon (COVID19-PEB) for simple detection of SARS-CoV-2 using a fluorescence resonance energy transfer system. COVID19-PEB exhibits minimal fluorescence in its ''closed'' hairpin structure; however, in the presence of SARS-CoV-2, the specific recognition of the S protein receptor-binding domain by COVID19-PEB causes the beacon to assume an ''open'' structure that emits strong fluorescence. COVID19-PEB can detect SARS-CoV-2 within 3 h or even 50 min and exhibits strong fluorescence even at low viral concentrations, with a detection limit of 4 × 103 plaque-forming unit/test. Furthermore, in SARS-CoV-2-infected patient samples confirmed using polymerase chain reaction, COVID19-PEB accurately detected the virus. COVID19-PEB could be developed as a rapid and accurate diagnostic tool for COVID-19.

3.
Anal Chem ; 88(2): 1078-82, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26717968

RESUMO

A novel method (i.e., continuous magnetic cell separation in a microfluidic channel) is demonstrated to be capable of inducing multifractionation of mixed cell suspensions into multiple outlet fractions. Here, multicomponent cell separation is performed with three different distinguishable magnetic nanoclusters (MnFe2O4, Fe3O4, and CoFe2O4), which are tagged on A431 cells. Because of their mass magnetizations, which can be ideally altered by doping with magnetic atom compositions (Mn, Fe, and Co), the trajectories of cells with each magnetic nanocluster in a flow are shown to be distinct when dragged under the same external magnetic field; the rest of the magnetic characteristics of the nanoclusters are identically fixed. This proof of concept study, which utilizes the magnetization-controlled nanoclusters (NCs), suggests that precise and effective multifractionation is achievable with high-throughput and systematic accuracy for dynamic cell separation.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas , Elementos de Transição/química , Linhagem Celular Tumoral , Humanos , Fenômenos Magnéticos , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Propriedades de Superfície
4.
Nanotechnology ; 27(49): 495705, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27831938

RESUMO

Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated 'sea-urchin' shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 µg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.

5.
Nanotechnology ; 25(24): 245103, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24872113

RESUMO

We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.


Assuntos
Meios de Contraste/síntese química , Gadolínio , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas Metálicas , Neoplasias/diagnóstico , Animais , Células 3T3 BALB , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Camundongos , Polietilenoglicóis/química , Pirenos/química
6.
Biosens Bioelectron ; 239: 115592, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603987

RESUMO

Exosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring. Various magnetic nanoclusters (MNCs) were synthesized with different degrees of magnetization, and antibodies were introduced to capture HER2-overexpressing and common exosomes using immunoaffinity. MNC-bonded exosomes were separated into different exits according to their magnetization degrees. The MEIS-chip efficiently separated HER2-overexpressing exosomes from common exosomes that did not contain disease-related information. The simultaneous separation of HER2-and non-HER2-overexpressing exosomes provided a means of analyzing high-purity HER2-overexpressing exosomes while minimizing the contribution of non-target exosomes, reducing misdiagnosis risk. Notably, common exosomes served as a negative control for monitoring real-time changes in HER2 expression. These findings support the application of MEIS-chip for cancer diagnosis and treatment monitoring via effective exosome isolation.


Assuntos
Técnicas Biossensoriais , Exossomos , Neoplasias , Humanos , Microfluídica , Neoplasias/diagnóstico , Anticorpos
7.
Food Chem ; 403: 134317, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182855

RESUMO

Ingesting large quantities of biogenic amines (BAs), which are released from spoiled foods, can have adverse side effects on the human body. Herein, we developed a colorimetric sensor using polydiacetylene (PDA)-based hydrogel beads that change color upon binding with BAs, thereby conveniently checking whether food is spoiled due to improper storage and distribution. The colorimetric sensor is fabricated by mixing PDA liposomes with an alginate solution. PDA undergoes a color change from blue to red when exposed to various external stimuli. In addition, alginate bestows the hydrogel with a three-dimensional porous structure, affording a large surface area. The PDA-based hydrogel beads can visually confirm the presence of BAs in solution or vapor form. Cadaverine and propylamine were rapidly detected with distinct color changes in the solution and vapor phases, respectively. The spoilage of pork meat at room temperature could be detected after two days as a 40.84% red chromatic shift.


Assuntos
Colorimetria , Hidrogéis , Humanos , Colorimetria/métodos , Aminas Biogênicas , Carne/análise , Alginatos
8.
Nat Neurosci ; 26(9): 1489-1504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620442

RESUMO

Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures. Infiltration of CD8+ T cells into AD cultures led to increased microglial activation, neuroinflammation and neurodegeneration. Using single-cell RNA-sequencing, we identified that infiltration of T cells into AD cultures led to induction of interferon-γ and neuroinflammatory pathways in glial cells. We found key roles for the C-X-C motif chemokine ligand 10 (CXCL10) and its receptor, CXCR3, in regulating T cell infiltration and neuronal damage in AD cultures. This human neuroimmune axis model is a useful tool to study the effects of peripheral immune cells in brain disease.


Assuntos
Doença de Alzheimer , Linfócitos T CD8-Positivos , Humanos , Neuroimunomodulação , Neuroglia , Neurônios
9.
Talanta ; 246: 123502, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523021

RESUMO

MicroRNAs (miRNAs) are important diagnostic and prognostic biomarkers for various tumors. Currently, many diagnostic systems have been developed to detect miRNAs, but simple techniques for detecting miRNAs are still required. Recently, we reported that the expression of miRNA-135b is upregulated in gastric epithelial cells during gastric inflammation and carcinogenesis. Our aim was to develop an in vitro diagnostic platform to analyze the expression of gastric cancer-related biomarkers in the blood. The diagnostic platform comprised an isothermal amplification-based lateral flow biosensor (IA-LFB) that enables easy diagnosis of gastric cancer through visual observation. In this platform, trace amounts of biomarkers are isothermally amplified through rolling circle amplification (RCA), and the amplified product is grafted to the LFB. The performance of the IA-LFB was confirmed using RNAs extracted from in vitro and in vivo models. The platform could detect target miRNAs within 3 h with excellent sensitivity and selectivity. In particular, the IA-LFB could detect the overexpression of gastric cancer-related markers (miRNA-135b and miRNA-21) in RNAs extracted from the blood of patients with various stages (stages 1-4) of gastric cancer compared to that in healthy volunteers. Therefore, IA-LFB is a simple and sensitive in vitro diagnostic system for detecting gastric cancer-related biomarkers and can contribute to the early diagnosis and prognosis monitoring of gastric cancer. Furthermore, this technology can be applied to systems that can detect multiple biomarkers related to various diseases (such as infectious and genetic diseases).


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias Gástricas , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
10.
Biosens Bioelectron ; 209: 114279, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447599

RESUMO

Alzheimer's disease (AD), one of the leading senile disorders in the world, causes severe memory loss and cognitive impairment. To date, there is no clear cure for AD. However, early diagnosis and monitoring can help mitigate the effects of this disease. In this study, we reported a platform for diagnosing early-stage AD using microRNAs (miRNAs) in the blood as biomarkers. First, we selected an appropriate target miRNA (miR-574-5p) using AD model mice (4-month-old 5XFAD mice) and developed a hydrogel-based sensor that enabled high-sensitivity detection of the target miRNA. This hydrogel contained catalytic hairpin assembly (CHA) reaction-based probes, leading to fluorescence signal amplification without enzymes and temperature changes, at room temperature. This sensor exhibited high sensitivity and selectivity, as evidenced by its picomolar-level detection limit (limit of detection: 1.29 pM). Additionally, this sensor was evaluated using the plasma of AD patients and non-AD control to validate its clinical applicability. Finally, to use this sensor as a point-of-care-testing (POCT) diagnostic system, a portable fluorometer was developed and verified for feasibility of application.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , MicroRNAs , Animais , Diagnóstico Precoce , Humanos , Hidrogéis , Camundongos , MicroRNAs/genética
11.
Biosens Bioelectron ; 197: 113753, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741958

RESUMO

Metastasis attributed to approximately 90% of cancer-related deaths; hence, the detection of metastatic tumor-derived components in the blood assists in determining cancer recurrence and patient survival. Microfluidic-based sensors facilitate analysis of small fluid volumes and represent an accurate, rapid, and user-friendly method of field diagnoses. In this study, we have developed a microfluidic chip-based exosomal mRNA sensor (exoNA-sensing chip) for the one-step detection of exosomal ERBB2 in the blood by integrating a microfluidic chip and 3D-nanostructured hydrogels. The exoNA-sensing chip is a vacuum-driven power-free microfluidic chip that can accurately control the flow of trace fluids (<100 µL). The sensing part of the exoNA-sensing chip includes 3D-nanostructured hydrogels capable of detecting ERBB2 and a reference gene by amplifying a fluorescent signal via an enzyme-free catalytic hairpin assembly reaction at room temperature. This hydrogel offers a detection limit of 58.3 fM with good selectivity for target sequences. The performance of the exoNA-sensing chip was evaluated by testing in vitro and in vivo samples and was proven to be effective for cancer diagnosis and liquid biopsies.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanoestruturas , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Dispositivos Lab-On-A-Chip , RNA Mensageiro/genética
12.
Nanomedicine (Lond) ; 16(10): 787-800, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890494

RESUMO

Aim: To confirm the biological effects of manganese ferrite magnetic nanoparticles (MFMNPs) and an external magnetic field on glioblastoma cells. Methods: U-87MG glioblastoma cells were prepared, into which the uptake of MFMNPs was high. The cells were then exposed to an external magnetic field using a neodymium magnet in vitro and in vivo. Results:LRP6 and TCF7 mRNA levels involved in the Wnt/ß-catenin signaling pathway were elevated by the influence of MFMNPs and the external magnetic field. MFMNPs and the external magnetic field also accelerated tumor growth by approximately 7 days and decreased survival rates in animal experiments. Conclusion: When MFMNPs and an external magnetic field are applied for a long time on glioblastoma cells, mRNA expression related to Wnt/ß-catenin signaling is increased and tumor growth is promoted.


Assuntos
Glioblastoma , Nanopartículas de Magnetita , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/genética , Glioblastoma/terapia , Campos Magnéticos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
13.
Biosens Bioelectron ; 194: 113576, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34454345

RESUMO

Multipotent adult stem cells (MASCs) derived from Pluripotent stem cells (PSCs) have found widespread use in various applications, including regenerative therapy and drug screening. For these applications, highly pluripotent PSCs need to be selectively separated from those that show low pluripotency for reusage of PSCs, and MASCs need to be collected for further application. Herein, we developed immunomagnetic microfluidic integrated system (IM-MIS) for separation of stem cells depending on potency level. In this system, each stem cell was multiple-separated in microfluidics chip by magnetophoretic mobility of magnetic-activated cells based on the combination of two sizes of magnetic nanoparticles and two different antibodies. Magnetic particles had a difference in the degree of magnetization, and antibodies recognized potency-related surface markers. IM-MIS showed superior cell separation performance than FACS with high throughput (49.5%) in a short time (<15 min) isolate 1 × 107 cells, and higher purity (92.1%) than MACS. IM-MIS had a cell viability of 89.1%, suggesting that IM-MIS had no effect on cell viability during isolation. Furthermore, IM-MIS did not affect the key characteristics of stem cells including its differentiation potency, phenotype, genotype, and karyotype. IM-MIS may offer a new platform for the development of multi-separation systems for diverse stem cell applications.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes , Diferenciação Celular , Separação Celular , Microfluídica
14.
Biosens Bioelectron ; 178: 113039, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524707

RESUMO

As stem cells show great promise in regenerative therapy, stem cell-mediated therapeutic efficacy must be demonstrated through the migration and transplantation of stem cells into target disease areas at the pre-clinical level. In this study, we developed manganese-based magnetic nanoparticles with hollow structures (MnOHo) and modified them with the anti-human integrin ß1 antibody (MnOHo-Ab) to enable the minimal-invasive monitoring of transplanted human stem cells at the pre-clinical level. Compared to common magnetic resonance imaging (MRI)-based stem cell monitoring systems that use pre-labeled stem cells with magnetic particles before stem cell injection, the MnOHo-Ab is a new technology that does not require stem cell modification to monitor the therapeutic capability of stem cells. Additionally, MnOHo-Ab provides improved T1 MRI owing to the hollow structure of the MnOHo. Particularly, the anti-integrin ß1 antibody (Ab) introduced in the MnOHo targets integrin ß1 expressed in the entire stem cell lineage, enabling targeted monitoring regardless of the differentiation stage of the stem cells. Furthermore, we verified that intravenously injected MnOHo-Ab specifically targeted human induced pluripotent stem cells (hiPSCs) that were transferred to mice testes and differentiated into various lineages. The new stem cell monitoring method using MnOHo-Ab demonstrates whether the injected human stem cells have migrated and transplanted themselves in the target area during long-term stem cell regenerative therapy.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Imageamento por Ressonância Magnética , Transplante de Células-Tronco
15.
Artigo em Inglês | MEDLINE | ID: mdl-33804164

RESUMO

We developed two distinct forest therapy programs (FTPs) and compared their effects on dementia prevention and related health problems for older adults. One was focused on Qigong practice in the forest (QP) and the other involved active walking in the forest (WP). Both FTPs consisted of twelve 2-h sessions over six weeks and were conducted in an urban forest. We obtained data from 25, 18, and 26 participants aged 65 years or above for the QP, WP, and control groups, respectively. Neuropsychological scores via cognition (MoCA), geriatric depression (GDS) and quality of life (EQ-5D), and electrophysiological variables (electroencephalography, bioimpedance, and heart rate variability) were measured. We analyzed the intervention effects with a generalized linear model. Compared to the control group, the WP group showed benefits in terms of neurocognition (increases in the MoCA score, and alpha and beta band power values in the electroencephalogram), sympathetic nervous activity, and bioimpedance in the lower body. On the other hand, the QP group showed alleviated depression and an increased bioimpedance phase angle in the upper body. In conclusion, both active walking and Qigong in the forest were shown to have distinctive neuropsychological and electrophysiological benefits, and both had beneficial effects in terms of preventing dementia and relieving related health problems for elderly individuals.


Assuntos
Qigong , Caminhada , Idoso , Florestas , Frequência Cardíaca , Humanos , Qualidade de Vida
16.
Nano Converg ; 7(1): 16, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32394133

RESUMO

Manganese oxide (MnO) nanocubes were fabricated and their surface were modified by ligand encapsulation or ligand exchange, to render them water-soluble. And then, MnO formed the hollow structure by etching using acidic solution (phthalate buffer, pH 4.0). Depending on the ligand of the MnO surface, it increases the interaction between MnO and water molecules. Also, the hollow structure of MnO, as well as the ligand, can greatly enhance the accessibility of water molecules to metal ions by surface area-to-volume ratio. These factors provide high R1 relaxation, leading to strong T1 MRI signal. We have confirmed T1-weighted MR contrast effect using 4-kinds of MnO nanocubes (MnOEn, MnOEnHo, MnOEx and MnOExHo). They showed enough a MR contrast effect and biocompatibility. Especially, among them, MnOExHo exhibited high T1 relaxivity (r1) (6.02 mM-1 s-1), even about 1.5 times higher sensitivity than commercial T1 MR contrast agents. In vitro/in vivo studies have shown that MnOExHo provides highly sensitive T1-weighted MR imaging, thereby improving diagnostic visibility at the disease site.

17.
ACS Nano ; 14(12): 17241-17253, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33216524

RESUMO

Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surface-enhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed via a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles. This assay detects three multidrug-resistant (MDR) bacteria, species Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae, without purification or gene amplification steps. Furthermore, MDR A. baumannii-infected mice were successfully diagnosed using the assay. Finally, we demonstrate the on-site capture and detection of MDR bacteria through a combination of the three-dimensional nanopillar array swab and CRISPR-mediated SERS assay. This method may prove effective for the accurate diagnosis of MDR bacterial pathogens, thus preventing severe infection by ensuring appropriate antibiotic treatment.

18.
Biosens Bioelectron ; 162: 112254, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32392157

RESUMO

The eye is an extension of the central nervous system (CNS) and contains aqueous humor (AH), which is a fluid rich in biomolecules secreted from intraocular tissues; thus, this organ allows for non-invasive visualization of early changes in CNS disorders. There is a growing interest in developing implantable devices, such as intraocular-lens (IOL), for specific medical uses, including intraocular monitoring. We describe a novel IOL-sensing system for detecting AH biomarkers via biocompatible enzyme-activatable fluorogenic hydrogel sensors. Matrix-metalloproteinase-9, a biomarker of degenerative CNS and eye disorders, was selected as a target. A peptide-probe-incorporated fluorogenic IOL (FIOL) was developed using diacrylamide-group-modified poly(ethyleneglycol) (PEGDAAm) biocompatible hydrogels, adjusting the hydrogel mesh size to allow selective penetration of the target while blocking non-targets, using label-free detection with semi-permanently implantable sensors, and demonstrating the clinical feasibility of FIOL through in vivo testing. This novel FIOL-based sensing system represents a promising approach for liquid biopsy of intraocular fluids.


Assuntos
Humor Aquoso/química , Técnicas Biossensoriais/métodos , Hidrogéis/química , Metaloproteinase 9 da Matriz/análise , Peptídeos/química , Animais , Biomarcadores/análise , Linhagem Celular , Doenças do Sistema Nervoso Central/diagnóstico , Corantes Fluorescentes/química , Humanos , Lentes Intraoculares , Coelhos
19.
Nanoscale ; 11(5): 2434-2438, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30667011

RESUMO

Herein, we report a de novo synthesis approach to produce bandgap-controlled polyaniline (PAni) nanostructure via Mn-mediated oxidative polymerization at the catalytic nanoreactor. To achieve systemic nanoconfined polymerization, manganese oxide (MnOx) nanoparticles coated with silica were used as the sacrificial nanotemplate. Interestingly, the catalytic nanoreactor simultaneously allowed the nanoconfined oxidative polymerization and controlling of the bandgap. MnOx could be reduced by the addition of aniline monomers and consecutive redox reaction at the nanoreactor. Furthermore, core cavity was generated, and ionized Mn could control the bandgap by coordination at the nanostructures.

20.
Nanomaterials (Basel) ; 9(3)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862030

RESUMO

We designed a high-sensitivity magnetic resonance imaging contrast agent that could be used to diagnose diseases. First, magnetic nanocrystals were synthesized by a thermal decomposition method on an organic solvent to obtain a high magnetism and methoxy poly(ethylene glycol)-poly(lactic acid) as an amphiphilic polymer using the ring-opening polymerization method to stably disperse the magnetic nanocrystals in an aqueous phase. Subsequently, the magnetic nanoclusters simultaneously self-assembled with methoxy poly(ethylene glycol)-poly(lactic acid) using the nano-emulsion method to form magnetic nanoclusters. Because their shape was similar to a raspberry, they were named PEGylated magnetic nano-assemblies. The PEGylated magnetic nano-assemblies were dispersed stably in the aqueous phase with a uniform size of approximately 65⁻70 nm for an extended period (0 days: 68.8 ± 5.1 nm, 33 days: 69.2 ± 2.0 nm, and 44 days: 63.2 ± 5.6). They exhibited both enough of a magnetic resonance (MR) contrast effect and biocompatibility. In an in vivo study, the PEGylated magnetic nano-assemblies provided a high contrast effect for magnetic resonance images for a long time after one treatment, thereby improving the diagnostic visibility of the disease site.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa