Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 19(6): e1011485, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384813

RESUMO

Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Vacinas , Feminino , Masculino , Humanos , Camundongos , Animais , Eficácia de Vacinas , Leucócitos Mononucleares , COVID-19/metabolismo , SARS-CoV-2 , Riboflavina/metabolismo , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor
2.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675751

RESUMO

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

3.
Vaccines (Basel) ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243081

RESUMO

Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates.

4.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649434

RESUMO

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controle
5.
Nat Med ; 26(6): 932-940, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393800

RESUMO

Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.


Assuntos
Anticorpos Neutralizantes/efeitos dos fármacos , Anticorpos Antivirais/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Produtos do Gene gag/genética , Imunidade Celular/efeitos dos fármacos , Vacinas contra a SAIDS/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Produtos do Gene gag/imunologia , Vetores Genéticos , Imunidade Celular/imunologia , Imunidade Heteróloga , Imunogenicidade da Vacina , Memória Imunológica/imunologia , Macaca mulatta , Mucosa , Vagina
6.
Virus Genes ; 24(1): 21-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11928985

RESUMO

The 3' noncoding region (NCR) of Japanese encephalitis (JE) viruses isolated in Korea and Nakayama-NIH strain have been sequenced and compared with the 3' NCR sequences of other JE isolates reported previously. Sequence alignment of about 60 nucleotides (based on consensus sequence number) immediately downstream of the open reading frame (ORF) stop codon in the 3' NCR of the Korean isolates showed high degree of sequence variation and deletion; thus, this region was termed as the variable region. However, in the predicted RNA secondary structures, a similar type loop exists at the 5'-terminus of the 3' NCR of JE viruses, despite low level of sequence homology (22%) and deletion in the variable region. The phylogenetic tree based on the 3' NCR sequences of JE viruses including the variable region showed a similar pattern to that based on envelope genes; in that, there are two genetically different types of JE viruses in Korea. Therefore, the variable region would be a useful genetic marker for JE viruses.


Assuntos
Região 3'-Flanqueadora/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Variação Genética , RNA Viral/química , Sequência de Bases , Marcadores Genéticos , Genoma Viral , Coreia (Geográfico)/epidemiologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA não Traduzido/genética , RNA Viral/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa