Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(1): 584-594, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843895

RESUMO

In this study, we provide critical evidence that STAT2 stability regulation plays an essential role in melanoma cell proliferation and colony growth. We found that the interaction of FBXW7 and STAT2 induced STAT2 destabilization via a ubiquitination-mediated proteasomal degradation pathway. Notably, GSK3ß-mediated STAT2 phosphorylation facilitated STAT2-FBXW7 interactions via the DNA binding domain of STAT2 and domains 1, 2, 6, and 7 of FBXW7 WD40. Importantly, the inverse correlation between protein levels of STAT2 and FBXW7 were observed not only in human melanoma cells but also in a human skin cancer tissue array. The relationship between protein levels of STAT2 and FBXW7, cell proliferation, and colony growth were similarly observed in the melanoma cell lines SK-MEL-2, -5, and -28. Moreover, STAT2 knockdown in melanoma cells suppressed melanoma cell proliferation and colony formation. These data demonstrated that FBXW7-mediated STAT2 stability regulation plays an essential role in melanoma cell proliferation and cancer growth.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Melanoma/patologia , Fator de Transcrição STAT2/metabolismo , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Estabilidade Proteica , Proteólise , Fator de Transcrição STAT2/química , Fator de Transcrição STAT2/genética , Serina/metabolismo , Transdução de Sinais , Pele/patologia , Treonina/metabolismo , Análise Serial de Tecidos , Ubiquitinação , Repetições WD40
2.
J Toxicol Environ Health A ; 84(22): 922-931, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34304725

RESUMO

Atopic dermatitis is a chronic inflammatory skin disease, of which incidence is closely related to exposure to environmental pollutants and allergens. Thymic stromal lymphopoietin (TSLP) plays an important role in the early stages of atopic dermatitis development by inducing Th2 immune responses. In addition, TSLP regulates activation of group 2 innate lymphoid cells (ILC2), promoting the pathogenesis of atopic dermatitis. The aim of this study was to investigate whether celastrol alleviated atopic dermatitis symptoms by regulating TSLP expression and ILC2 stimulation. Celastrol suppressed TSLP production in mouse keratinocyte cells by inhibiting NF-ĸB activation. Topical application of celastrol significantly improved atopic dermatitis symptoms induced by house dust mite (HDM) in NC/Nga mice as determined by dermatitis score and histological assessment. Celastrol decreased the levels of TSLP in atopic dermatitis skin lesions of HDM-stimulated NC/Nga mice. Celastrol reduced levels of Th2 cytokines including IL-4, IL-5, and IL-13 in atopic dermatitis skin lesions of NC/Nga mice. Further, celastrol significantly reduced ILC2 population in atopic dermatitis skin lesions of NC/Nga mice. These results indicate that topical application of celastrol improved atopic dermatitis symptoms by lowering TSLP levels and concomitant immune responses. Data demonstrated that reduced TSLP levels and associated lower number of ILC2 cells alleviate atopic dermatitis symptoms induced by house dust mite.


Assuntos
Citocinas/imunologia , Dermatite Atópica/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Triterpenos Pentacíclicos/administração & dosagem , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Linhagem Celular Tumoral , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Inflamação , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Linfócitos/imunologia , Camundongos , NF-kappa B/imunologia , Triterpenos Pentacíclicos/farmacologia , Pyroglyphidae/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Linfopoietina do Estroma do Timo
3.
J Toxicol Environ Health A ; 84(20): 821-835, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34187333

RESUMO

The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.


Assuntos
Alfa-Amanitina/farmacocinética , Venenos/farmacocinética , Animais , Cromatografia Líquida , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Fígado/enzimologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Microssomos/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669811

RESUMO

Although the lignan compound fargesin is a major ingredient in Shin-Yi, the roles of fargesin in carcinogenesis and cancer cell growth have not been elucidated. In this study, we observed that fargesin inhibited cell proliferation and transformation by suppression of epidermal growth factor (EGF)-stimulated G1/S-phase cell cycle transition in premalignant JB6 Cl41 and HaCaT cells. Unexpectedly, we found that signaling pathway analyses showed different regulation patterns in which fargesin inhibited phosphatidylinositol 3-kinase/AKT signaling without an alteration of or increase in mitogen activated protein kinase (MAPK) in JB6 Cl41 and HaCaT cells, while both signaling pathways were abrogated by fargesin treatment in colon cancer cells. We further found that fargesin-induced colony growth inhibition of colon cancer cells was mediated by suppression of the cyclin dependent kinase 2 (CDK2)/cyclin E signaling axis by upregulation of p21WAF1/Cip1, resulting in G1-phase cell cycle accumulation in a dose-dependent manner. Simultaneously, the suppression of CDK2/cyclin E and induction of p21WAF1/Cip1 were correlated with Rb phosphorylation and c-Myc suppression. Taken together, we conclude that fargesin-mediated c-Myc suppression inhibits EGF-induced cell transformation and colon cancer cell colony growth by the suppression of retinoblastoma (Rb)-E2F and CDK/cyclin signaling pathways, which are mainly regulated by MAPK and PKB signaling pathways.


Assuntos
Benzodioxóis/farmacologia , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Fator de Crescimento Epidérmico/efeitos adversos , Lignanas/farmacologia , Transdução de Sinais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Molecules ; 26(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670601

RESUMO

Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1ß production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1ß and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.


Assuntos
Gota/tratamento farmacológico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Iridoides/uso terapêutico , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Oral , Animais , Células Cultivadas , DNA Mitocondrial/biossíntese , Modelos Animais de Doenças , Gota/complicações , Inflamação/complicações , Iridoides/química , Iridoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Ácido Úrico
6.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326002

RESUMO

Atopic dermatitis (AD) is a common and relapsing skin disease that is characterized by skin barrier dysfunction, inflammation, and chronic pruritus. While AD was previously thought to occur primarily in children, increasing evidence suggests that AD is more common in adults than previously assumed. Accumulating evidence from experimental, genetic, and clinical studies indicates that AD expression is a precondition for the later development of other atopic diseases, such as asthma, food allergies, and allergic rhinitis. Although the exact mechanisms of the disease pathogenesis remain unclear, it is evident that both cutaneous barrier dysfunction and immune dysregulation are critical etiologies of AD pathology. This review explores recent findings on AD and the possible underlying mechanisms involved in its pathogenesis, which is characterized by dysregulation of immunological and skin barrier integrity and function, supporting the idea that AD is a systemic disease. These findings provide further insights for therapeutic developments aiming to repair the skin barrier and decrease inflammation.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Suscetibilidade a Doenças , Pele/imunologia , Pele/metabolismo , Alérgenos , Animais , Biomarcadores , Citocinas/metabolismo , Dermatite Atópica/patologia , Dermatite Atópica/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Homeostase , Humanos , Imunidade , Imunomodulação , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Transdução de Sinais , Pele/patologia , Receptores Toll-Like/metabolismo , Linfopoietina do Estroma do Timo
7.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316419

RESUMO

Non-alcoholic steatohepatitis (NASH), a type of non-alcoholic fatty liver disease, is characterized as steatosis and inflammation in the liver. NLRP3 inflammasome activation is associated with NASH pathology. We hypothesized that suppressing the NLRP3 inflammasome could be effective in preventing NASH. We searched substances that could inhibit the activation of the NLRP3 inflammasome and identified sweroside as an NLRP3 inhibitor. We investigated whether sweroside can be applied to prevent the pathological symptoms associated with NASH in a methionine-choline-deficient (MCD) diet-induced NASH mouse model. The activation of the NLRP3 inflammasome was determined by detecting the production of caspase-1 and IL-1ß from pro-caspase-1 and pro-IL-1ß in primary mouse macrophages and mouse liver. In a NASH model, mice were fed an MCD diet for two weeks with daily intraperitoneal injections of sweroside. Sweroside effectively inhibited NLRP3 inflammasome activation in primary macrophages as shown by a decrease in IL-1ß and caspase-1 production. In a MCD diet-induced NASH mouse model, intraperitoneal injection of sweroside significantly reduced serum aspartate transaminase and alanine transaminase levels, hepatic immune cell infiltration, hepatic triglyceride accumulation, and liver fibrosis. The improvement of NASH symptoms by sweroside was accompanied with its inhibitory effects on the hepatic NLRP3 inflammasome as hepatic IL-1ß and caspase-1 were decreased. Furthermore, sweroside blocked de novo synthesis of mitochondrial DNA in the liver, contributing to suppression of the NLRP3 inflammasome. These results suggest that targeting the NLRP3 inflammasome with sweroside could be beneficially employed to improve NASH symptoms.


Assuntos
Caspase 1/metabolismo , Dieta/efeitos adversos , Interleucina-1beta/metabolismo , Glucosídeos Iridoides/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Colina/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Intraperitoneais , Glucosídeos Iridoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metionina/deficiência , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Resultado do Tratamento
8.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164308

RESUMO

Doxorubicin, an anthracycline antitumor antibiotic, acts as a cancer treatment by interfering with the function of DNA. Herein, liquid chromatography-tandem mass spectrometry was for the first time developed and validated for the simultaneous determination of doxorubicin and its major metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The liquid-liquid extraction of a 10 µL mouse plasma sample with chloroform:methanol (4:1, v/v) and use of the selected reaction monitoring mode led to less matrix effect and better sensitivity. The lower limits of quantification levels were 0.5 ng/mL for doxorubicin, 0.1 ng/mL for doxorubicinol, and 0.01 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone. The standard curves were linear over the range of 0.5-200 ng/mL for doxorubicin; 0.1-200 ng/mL for doxorubicinol; and 0.01-50 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The intra and inter-day relative standard deviation and relative errors for doxorubicin and its four metabolites at four quality control concentrations were 0.9-13.6% and -13.0% to 14.9%, respectively. This method was successfully applied to the pharmacokinetic study of doxorubicin and its metabolites after intravenous administration of doxorubicin at a dose of 1.3 mg/kg to female BALB/c nude mice.


Assuntos
Doxorrubicina/análogos & derivados , Doxorrubicina/sangue , Doxorrubicina/metabolismo , Naftacenos/sangue , Plasma/metabolismo , Animais , Antibióticos Antineoplásicos/sangue , Antibióticos Antineoplásicos/metabolismo , Cromatografia Líquida/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espectrometria de Massas em Tandem/métodos
9.
Mol Carcinog ; 58(7): 1221-1233, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887599

RESUMO

Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3ß at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3ß-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quimioprevenção , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
10.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018569

RESUMO

Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Fatores de Transcrição/genética
11.
Molecules ; 24(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174271

RESUMO

Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate (MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate (EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1ß in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome. In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3 inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.


Assuntos
Catequina/análogos & derivados , Gota/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Caspase 1/genética , Catequina/farmacologia , DNA Mitocondrial/biossíntese , DNA Mitocondrial/efeitos dos fármacos , Modelos Animais de Doenças , Gota/genética , Gota/patologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/toxicidade
12.
Molecules ; 24(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823561

RESUMO

25B-NBF, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-fluorobenzyl)ethanamine, is a new psychoactive substance classified as a phenethylamine. It is a potent agonist of the 5-hydroxytryptamine receptor, but little is known about its metabolism and elimination properties since it was discovered. To aid 25B-NBF abuse screening, the metabolic characteristics of 25B-NBF were investigated in human hepatocytes and human cDNA-expressed cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes using liquid chromatography⁻high resolution mass spectrometry. At a hepatic extraction ratio of 0.80, 25B-NBF was extensively metabolized into 33 metabolites via hydroxylation, O-demethylation, bis-O-demethylation, N-debenzylation, glucuronidation, sulfation, and acetylation after incubation with pooled human hepatocytes. The metabolism of 25B-NBF was catalyzed by CYP1A1, CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2J2, CYP3A4, and UGT2B7 enzymes. Based on these results, it is necessary to develop a bioanalytical method for the determination of not only 25B-NBF but also its metabolites in biological samples for the screening of 25B-NBF abuse.


Assuntos
Compostos de Benzil/química , Compostos de Benzil/metabolismo , Etilaminas/química , Etilaminas/metabolismo , Hepatócitos/metabolismo , Fenetilaminas/metabolismo , Antagonistas da Serotonina/metabolismo , Biocatálise , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Estrutura Molecular , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
13.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430908

RESUMO

APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug-drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5'-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1'-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min-1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 µM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.


Assuntos
Transporte Biológico/efeitos dos fármacos , Canabinoides/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Linhagem Celular , Interações Medicamentosas , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
14.
Rheumatology (Oxford) ; 57(4): 727-736, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340626

RESUMO

Objective: The aetiology of gout is closely linked to the deposition of monosodium uric acid (MSU) crystals and the consequent activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we investigated whether oral administration of an NLRP3 inhibitor would be effective to attenuate the symptoms of gout. Methods: The effects of oral administration with sulforaphane (SFN) were examined in two mouse models of acute gout induced by injection of MSU crystals into footpads or air pouch. The production of caspase-1 (p10) and IL-1ß was examined by immunoblotting and ELISA as hallmarks of NLRP3 inflammasome activation. Results: Oral administration of SFN attenuated MSU crystal-induced swelling and neutrophil recruitment in a mouse foot acute gout model, correlating with the suppression of the NLRP3 inflammasome activation in foot tissues. Consistently, oral administration of SFN blocked MSU-crystal-induced activation of the NLRP3 inflammasome in a mouse air pouch gout model. SFN suppressed NLRP3 inflammasome activation induced by MSU crystals, adenosine triphosphate and nigericin but not by poly(dA:dT) in primary mouse macrophages, independent of the reactive oxygen species pathway. SFN inhibited ligand-independent activation of the NLRP3 inflammasome, suggesting that SFN may act directly on the NLRP3 inflammasome complex. Conclusion: Oral administration of SFN effectively alleviated acute gouty inflammation by suppression of the NLRP3 inflammasome. Our results provide a novel strategy in which oral treatment with SFN may be beneficial in preventing acute attacks of gout.


Assuntos
Gota/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Isotiocianatos/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Doença Aguda , Administração Oral , Animais , Anticarcinógenos/administração & dosagem , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Gota/metabolismo , Gota/patologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfóxidos , Ácido Úrico/toxicidade
15.
Phytother Res ; 32(12): 2551-2559, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281174

RESUMO

Activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome by Propionibacterium acnes (P. acnes) is critical for inducing inflammation and aggravating the development of acne lesions. We searched for available small-molecule inhibitors of the NLRP3 inflammasome that could be topically administered for the treatment of acne. We found that licochalcone A, a chalconoid isolated from the root of Glycyrrhiza inflate, was an effective inhibitor for P. acnes-induced NLRP3 inflammasome activation. Licochalcone A blocked P. acnes-induced production of caspase-1(p10) and IL-1ß in primary mouse macrophages and human SZ95 sebocytes, indicating the suppression of NLRP3 inflammasome. Licochalcone A suppressed P. acnes-induced ASC speck formation and mitochondrial reactive oxygen species. Topical application of licochalcone A to mouse ear skin attenuated P. acnes-induced skin inflammation as shown by histological assessment, ear thickness measurement, and inflammatory gene expression. Licochalcone A reduced caspase-1 activity and IL-1ß production in mouse ear injected with P. acnes. This study demonstrated that licochalcone A is effective in the control of P. acnes-induced skin inflammation as an efficient inhibitor for NLRP3 inflammasome. Our study provides a new paradigm for the development of anti-acne therapy via targeting NLRP3 inflammasome.


Assuntos
Acne Vulgar/prevenção & controle , Chalconas/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , Pele/efeitos dos fármacos , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Animais , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia
16.
Mol Pharm ; 14(3): 842-855, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199124

RESUMO

The clinical application of intracellular gene delivery via nanosized carriers is hindered by intracellular multistep barriers that limit high levels of gene expression. To solve these issues, four different intracellular or external stimuli that can efficiently activate a gene carrier, a gene, or a photosensitizer (pheophorbide A [PhA]) were assessed in this study. The designed nanosized polymeric gene complexes were composed of PhA-loaded thiol-degradable polycation (PhA@RPC) and cytomegalovirus (CMV) promoter-equipped pDNA. After cellular internalization of the resulting PhA@RPC/pDNA complexes, the complexes escaped endosomal sequestration, owing to the endosomal pH-induced endosomolytic activity of RPC in PhA@RPC. Subsequently, intracellular thiol-mediated polycation degradation triggered the release of PhA and pDNA from the complexes. Late exposure to light (for example, 12 h post-treatment) activated the released PhA and resulted in the production of reactive oxygen species (ROS). Intracellular ROS successively activated NF-κB, which then reactivated the CMV promoter in the pDNA. These sequential, stimuli-responsive chemical and biological reactions resulted in high gene expression. In particular, the time-point of light exposure was very significant to tune efficient gene expression as well as negligible cytotoxicity: early light treatment induced photochemical internalization but high cytotoxicity, whereas late light treatment influenced the reactivation of silent pDNA via PhA-generated ROS and activation of NF-κB. In conclusion, the quadruple triggers, such as pH, thiol, light, and ROS, successively influenced a gene carrier (RPC), a photosensitizer, and a genetic therapeutic, and the tempo-spatial activation of the designed quadruple stimuli-activatable nanosized gene complexes could be potential in gene delivery applications.


Assuntos
DNA/metabolismo , Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Técnicas de Transferência de Genes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , NF-kappa B/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Plasmídeos/genética , Poliaminas/administração & dosagem , Polieletrólitos , Espécies Reativas de Oxigênio/metabolismo , Transfecção/métodos
17.
Biomacromolecules ; 18(4): 1074-1085, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257184

RESUMO

Bioactivable nanocarrier systems have favorable characteristics such as high cellular uptake, target specificity, and an efficient intracellular release mechanism. In this study, we developed a bioreducible methoxy polyethylene glycol (mPEG)-triphenylphosphonium (TPP) conjugate (i.e., mPEG-(ss-TPP)2 conjugate) as a vehicle for mitochondrial drug delivery. A bioreducible linkage with two disulfide bond-containing end groups was used at one end of the hydrophilic mPEG for conjugation with lipophilic TPP molecules. The amphiphilic mPEG-(ss-TPP)2 self-assembled in aqueous media, which thereby formed core-shell structured nanoparticles (NPs) with good colloidal stability, and efficiently encapsulated the lipophilic anticancer drug doxorubicin (DOX). The DOX-loaded mPEG-(ss-TPP)2 NPs were characterized in terms of their physicochemical and morphological properties, drug-loading and release behaviors, in vitro anticancer effects, and mitochondria-targeting capacity. Our results suggest that bioreducible DOX-loaded mPEG-(ss-TPP)2 NPs can induce fast drug release with enhanced mitochondrial uptake and have a better therapeutic effect than nonbioreducible NPs.


Assuntos
Portadores de Fármacos/química , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
18.
Mol Pharm ; 12(8): 2845-57, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26132975

RESUMO

Double helix nucleic acids were used as a combination drug carrier for doxorubicin (DOX), which physically intercalates with DNA double helices, and cisplatin (CDDP), which binds to DNA without an alkylation reaction. DNA interacting with DOX, CDDP, or both was complexed with positively charged, endosomolytic polymers. Compared with the free drug, the polyplexes (100-170 nm in size) delivered more drug into the cytosol and the nucleus and demonstrated similar or superior (up to a 7-fold increase) in vitro cell-killing activity. Additionally, the gene expression activities of most of the chemical drug-loaded plasmid DNA (pDNA) polyplexes were not impaired by the physical interactions between the nucleic acid and DOX/CDDP. When a model reporter pDNA (luciferase) was employed, it expressed luciferase protein at 0.7- to 1.4-fold the amount expressed by the polyplex with no bound drugs (a control), which indicated the fast translocation of the intercalated or bound drugs from the "carrier DNA" to the "nuclear DNA" of target cells. The proposed concept may offer the possibility of versatile combination therapies of genetic materials and small molecule drugs that bind to nucleic acids to treat various diseases.


Assuntos
Cisplatino/farmacologia , DNA/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Polímeros/química , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Transferência de Genes , Humanos , Técnicas In Vitro , Luciferases/metabolismo , Células MCF-7 , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Plasmídeos/administração & dosagem , Transfecção , Células Tumorais Cultivadas
19.
Biomacromolecules ; 15(6): 2224-34, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24805286

RESUMO

In the study presented here, we developed a bioreducible biarmed methoxy poly(ethylene glycol)-(pheophorbide a)2 (mPEG-(ss-PhA)2) conjugate for cancer-cell-specific photodynamic therapy (PDT). PhA molecules were chemically conjugated with biarmed linkages at one end of the mPEG molecule via disulfide bonds. Under aqueous conditions, the amphiphilic mPEG-(ss-PhA)2 conjugate self-assembled to form core-shell-structured nanoparticles (NPs) with good colloidal stability. The mPEG-(ss-PhA)2 NPs exhibited intramolecular and intermolecular self-quenching effects that enabled the NPs to remain photoinactive in a physiological buffer. However, the dissociation of the NP structure was effectively induced by the cleavage of the disulfide bonds in response to intracellular reductive conditions, triggering the rapid release of PhA molecules in a photoactive form. In cell-culture systems, in addition to significant phototoxicity and intracellular uptake, we observed that the dequenching processes of PhA in the mPEG-(ss-PhA)2 NPs highly depended on the expression of intracellular thiols and that supplementation with glutathione monoethylester facilitated more rapid PhA release and enhanced the PhA phototoxicity. These findings suggest that the bioreducible activation mechanism of mPEG-(ss-PhA)2 NPs in cancer cells can maximize the cytosolic dose of active photosensitizers to achieve high cytotoxicity, thereby enhancing the treatment efficacy of photodynamic cancer treatment.


Assuntos
Clorofila/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Clorofila/administração & dosagem , Clorofila/química , Portadores de Fármacos/administração & dosagem , Células HeLa , Humanos , Células MCF-7 , Polietilenoglicóis/administração & dosagem
20.
Adv Drug Deliv Rev ; 212: 115386, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971180

RESUMO

To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.


Assuntos
Sistemas de Liberação de Medicamentos , Retículo Endoplasmático , Complexo de Golgi , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa