Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838843

RESUMO

Phloretin and its glycoside phlorizin have been reported to prevent obesity induced by high-fat diet (HFD), but the effect of 3-OH phloretin, a catechol metabolite of phloretin, has not been investigated. In this study, we investigated the anti-obesity effects of phloretin and 3-OH phloretin in HFD-fed mice. The body weight gain induced by HFD was more inhibited by administration of 3-OH phloretin than by phloretin. The increases in fat mass, white adipose tissue (WAT) weight, adipocyte size, and lipid accumulation by HFD were also remarkably inhibited by 3-OH phloretin and, to a lesser extent, by phloretin. The HFD-induced upregulation of chemokines and pro-inflammatory cytokines was suppressed by 3-OH phloretin, preventing M1 macrophages from infiltrating into WAT and thereby reducing WAT inflammation. 3-OH phloretin also showed a more potent effect than phloretin on suppressing the expression of adipogenesis regulator genes, such as PPARγ2, C/EBPα, FAS, and CD36. Fasting blood glucose and insulin levels increased by HFD were diminished by the administration of 3-OH phloretin, suggesting that 3-OH phloretin may alleviate obesity-induced insulin resistance. These findings suggested that 3-OH phloretin has the potential to be a natural bioactive compound that can be used in the prevention or treatment of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Animais , Camundongos , Dieta Hiperlipídica , Floretina/farmacologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/metabolismo , Macrófagos , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL
2.
FASEB J ; 35(4): e21479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710680

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor expressed on macrophages, microglial cells, and pre-osteoclasts, and that participates in diverse cellular function, including inflammation, bone homeostasis, neurological development, and coagulation. In spite of the indispensable role of the TREM2 protein in the maintenance of immune homeostasis and osteoclast differentiation, the exact ligand for TREM2 has not yet been identified. Here, we report a putative TREM2 ligand which is secreted from MC38 cells and identified as a cyclophilin A (CypA). A specific interaction between CypA and TREM2 was shown at both protein and cellular levels. Exogenous CypA specifically interacted and co-localized with TREM2 in RAW264.7 cells, and the physical interactions were shown to regulate TREM2 signaling transduction. The Pro144 residue in the extracellular domain of TREM2 was found to be the specific binding site of CypA. When considered together, this provides evidence that CypA interacts specifically with TREM2 as a potent ligand.


Assuntos
Ciclofilina A/metabolismo , Ligantes , Microglia/metabolismo , Células Mieloides/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Humanos , Macrófagos/metabolismo , Osteoclastos/metabolismo
3.
Cell Biol Toxicol ; 38(4): 557-575, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35267148

RESUMO

Human lung organoids (hLOs) are useful for disease modelling and drug screening. However, a lack of immune cells in hLOs limits the recapitulation of in vivo cellular physiology. Here, we generated hLOs containing alveolar macrophage (AMφ)-like cells derived from pluripotent stem cells (PSC). To bridge hLOs with advanced human lung high-resolution X-ray computed tomography (CT), we acquired quantitative micro-CT images. Three hLO types were observed during differentiation. Among them, alveolar hLOs highly expressed not only lung epithelial cell markers but also AMφ-specific markers. Furthermore, CD68+ AMφ-like cells were spatially organized on the luminal epithelial surface of alveolar hLOs. Bleomycin-treated alveolar hLOs showed upregulated expression of fibrosis-related markers and extracellular matrix deposits in the alveolar sacs. Alveolar hLOs also showed structural alterations such as excessive tissue fraction under bleomycin treatment. Therefore, we suggest that micro-CT analyzable PSC-derived alveolar hLOs are a promising in vitro model to predict lung toxicity manifestations, including fibrosis.


Assuntos
Células-Tronco Pluripotentes , Fibrose Pulmonar , Células Epiteliais Alveolares , Bleomicina/metabolismo , Humanos , Pulmão , Macrófagos Alveolares , Organoides , Células-Tronco Pluripotentes/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Microtomografia por Raio-X
4.
BMC Immunol ; 22(1): 30, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980160

RESUMO

BACKGROUND: Triggering receptor expressed on myeloid cells 2 (TREM2) signaling is considered to regulate anti-inflammatory responses in macrophages, dendritic cell maturation, osteoclast development, induction of obesity, and Alzheimer's disease pathogenesis. However, little is known regarding the effect of TREM2 on natural killer (NK) cells. RESULTS: Here, we demonstrated for the first time that CD3-CD122+NK1.1+ precursor NK (pNK) cells expressed TREM2 and their population increased in TREM2-overexpressing transgenic (TREM2-TG) mice compared with that in female C57BL/6 J wild type (WT) mice. Both NK cell-activating receptors and NK cell-associated genes were expressed at higher levels in various tissues of TREM2-TG mice than in WT mice. In addition, bone marrow-derived hematopoietic stem cells (HSCs) of TREM2-TG mice (TG-HSCs) successfully differentiated into NK cells in vitro, with a higher yield from TG-HSCs than from WT-HSCs. In contrast, TREM2 signaling inhibition by TREM2-Ig or a phosphatidylinositol 3-kinase (PI3K) inhibitor affected the expression of the NK cell receptor repertoire and decreased the expression levels of NK cell-associated genes, resulting in significant impairment of NK cell differentiation. Moreover, in melanoma-bearing WT mice, injection of bone marrow cells from TREM2-TG mice exerted greater antitumor effects than that with cells from WT control mice. CONCLUSIONS: Collectively, our data clearly showed that TREM2 promoted NK cell development and tumor regression, suggesting TREM2 as a new candidate for cancer immunotherapy.


Assuntos
Células da Medula Óssea/imunologia , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Transplante de Medula Óssea , Complexo CD3/metabolismo , Diferenciação Celular , Feminino , Humanos , Imunoterapia Adotiva , Subunidade beta de Receptor de Interleucina-2/metabolismo , Melanoma/terapia , Melanoma Experimental , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais , Receptores Imunológicos/genética
5.
FASEB J ; 33(12): 13386-13397, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550172

RESUMO

Gut-homing γδ T cells are induced by chemokines and cell adhesion molecules and play a critical role in homeostasis and mucosal immunity; however, little is known regarding their upstream regulators. We investigated the role of Axl as a specific regulator of chemokines and cell adhesion molecule in the distribution of intestinal γδ T cells. The population of γδ T-cell receptor-positive cells including Vγ1 and Vγ7 subsets was remarkably increased in the intraepithelial lymphocytes of Axl-/- mice compared with those of wild-type (WT) mice. An increased number of migrated γδ T cells were observed in the coculture with intraepithelial cells from Axl-/- mice. The mRNA expression level of chemokine (C-C motif) ligand (CCL) 25 was specifically higher in the small intestine of Axl-/- mice than in WT mice. In adoptive transfer, the migration of both thymic and extrathymic γδ T cells was increased in Axl-/- mice. The activation of Axl signaling down-regulated CCL25 expression via ERK signaling pathway and reduced the population of γδ T cells. Systemic dissemination was suppressed in Axl-/- mice infected with Salmonella typhimurium. Thus, our findings suggest that Axl plays a critical role in regulating the migration of γδ T cells for the maintenance of homeostasis and bacterial resistance.-Kim, S.-M., Park, M., Yee, S.-M., Ji, K.-Y., Lee, E.-H., Nguyen, T.-V., Nguyen, T. H.-L., Jang, J., Kim, E.-M., Choi, H.-R., Yun, C.-H., Kang, H.-S. Axl is a key regulator of intestinal γδ T-cell homeostasis.


Assuntos
Células Epiteliais/imunologia , Homeostase , Intestino Delgado/imunologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Febre Tifoide/imunologia , Animais , Movimento Celular , Células Cultivadas , Quimiocinas CC/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Salmonella typhimurium/fisiologia , Febre Tifoide/metabolismo , Febre Tifoide/microbiologia , Receptor Tirosina Quinase Axl
6.
BMC Complement Altern Med ; 18(1): 39, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382339

RESUMO

BACKGROUND: Hesperidin is a flavonoid with antioxidant, anti-inflammatory, and immune modulatory activities. Photoaging is a consequence of chronic exposure to the sun and ultraviolet (UV) radiation. This study was designed to evaluate the efficacy of hesperidin against photoaging of dorsal skin in hairless mice. METHODS: Hairless male mice (6-week-old) were divided into three groups (n = 7): control, UVB-treated vehicle, and UVB-treated hesperidin groups. UVB-irradiated mice from hesperidin group were orally administered 0.1 mL of water containing 100 mg/kg body weight per day hesperidin. RESULTS: The mean length and depth of wrinkles in the UVB-treated hesperidin group significantly improved after the oral administration of hesperidin, which significantly inhibited the increase in epidermal thickness and epidermal hypertrophy (P < 0.05). UVB irradiation of mice induced epidermal barrier dysfunction including an increase in the transepidermal water loss (TEWL); however, hesperidin decreased the TEWL. UVB irradiation increased the expression of MMP-9 and pro-inflammatory cytokines whereas UVB-treated hesperidin group showed reduced expression. These results indicate that hesperidin showed anti-photoaging activity in the UVB-irradiated hairless mice. In conclusion, hesperidin inhibited the UVB-induced increase in skin thickness, wrinkle formation, and collagen fiber loss in male hairless mice. CONCLUSIONS: These results suggest that hesperidin shows potent anti-photoaging activity by regulating MMP-9 expression through the suppression of MAPK-dependent signaling pathways.


Assuntos
Antioxidantes/farmacologia , Hesperidina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Pelados , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta
7.
Biotechnol Lett ; 39(1): 105-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27640009

RESUMO

OBJECTIVES: To find a simple enzymatic strategy for the efficient synthesis of the expensive 5'-hydroxyomeprazole sulfide, a recently identified minor human metabolite, from omeprazole sulfide, which is an inexpensive substrate. RESULTS: The practical synthetic strategy for the 5'-OH omeprazole sulfide was accomplished with a set of highly active CYP102A1 mutants, which were obtained by blue colony screening from CYP102A1 libraries with a high conversion yield. The mutant and even the wild-type enzyme of CYP102A1 catalyzed the high regioselective (98 %) C-H hydroxylation of omeprazole sulfide to 5'-OH omeprazole sulfide with a high conversion yield (85-90 %). CONCLUSIONS: A highly efficient synthesis of 5'-OH omeprazole sulfide was developed using CYP102A1 from Bacillus megaterium as a biocatalyst.


Assuntos
Bacillus megaterium/metabolismo , Omeprazol/análogos & derivados , Proteínas de Bactérias/metabolismo , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidroxilação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Omeprazol/metabolismo , Estereoisomerismo
8.
Drug Metab Dispos ; 42(9): 1493-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008345

RESUMO

A large set of Bacillus megaterium CYP102A1 mutants are known to metabolize various drugs to form human metabolites. Omeprazole (OMP), a proton pump inhibitor, has been widely used as an acid inhibitory agent for the treatment of gastric acid hypersecretion disorders. It is primarily metabolized by human CYP2C19 and CYP3A4 to 5'-OH OMP and a sulfone product, respectively. It was recently reported that several CYP102A1 mutants can oxidize racemic and S-OMP to 5'-OH OMP and that these mutants can further oxidize 5'-OH racemic OMP to 5'-COOH OMP. Here, we report that the S- and R-enantiomers of OMP are hydroxylated by 26 mutants of CYP102A1 to produce 1 major metabolite (5'-OH OMP) regardless of the chirality of the parent substrates. Although the binding of R-OMP to the CYP102A1 active site caused a more apparent change of heme environment compared with binding of S-OMP, there was no correlation between the spectral change upon substrate binding and catalytic activity of either enantiomer. The 5'-OH OMP produced from racemic, S-, and R-OMP could be obtained with a high conversion rate and high selectivity when the triple R47L/F87V/L188Q mutant was used. These results suggest that bacterial CYP102A1 mutants can be used to produce the human metabolite 5'-OH OMP from both the S- and R-enantiomers of OMP.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação/fisiologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Omeprazol/metabolismo , Bacillus megaterium/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Heme/metabolismo , Mutação/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução , Estereoisomerismo
9.
Biotechnol Bioeng ; 111(7): 1313-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24474032

RESUMO

Human drug metabolites produced by cytochrome P450 enzymes are critical for safety testing and may themselves act as drugs or leads in the drug discovery and development process. Here, highly active chimeric fusion proteins (chimeras) were obtained by reductase domain swapping of mutants at key catalytic residues of the heme domain with that of a natural variant (CYP102A1.2) of P450 BM3 (CYP102A1.1) from Bacillus megaterium. Random mutagenesis at the heme domain of the chimera was also used to generate chimeric mutants that were more active and diverse than the chimeras themselves. To determine whether the chimeras and several mutants of the highly active chimera displayed enhanced catalytic activity and, more importantly, whether they acquired activities of biotechnological importance, we measured the oxidation activities of the chimeras and chimeric mutants toward human P450 substrates, mainly drugs. Some of the chimeric mutants showed high activity toward typical human P450 substrates including drugs. Statin leads, especially chiral products, with inhibitory effects toward HMG-CoA reductase could be obtained from metabolites of statin drugs generated using these chimeric mutants. This study reveals the critical role of the reductase domain for the activity of P450 BM3 and shows that chimeras generated by domain swapping can be used to develop industrial enzymes for the synthesis of human metabolites from drugs and drug leads.


Assuntos
Bacillus megaterium/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Cinética , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Sci Rep ; 13(1): 5371, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005456

RESUMO

Axl is a tyrosine kinase receptor, a negative regulator for innate immune responses and inflammatory bowel disease (IBD). The gut microbiota regulates intestinal immune homeostasis, but the role of Axl in the pathogenesis of IBD through the regulation of gut microbiota composition remains unresolved. In this study, mice with DSS-induced colitis showed increased Axl expression, which was almost entirely suppressed by depleting the gut microbiota with antibiotics. Axl-/- mice without DSS administration exhibited increased bacterial loads, especially the Proteobacteria abundant in patients with IBD, significantly consistent with DSS-induced colitis mice. Axl-/- mice also had an inflammatory intestinal microenvironment with reduced antimicrobial peptides and overexpression of inflammatory cytokines. The onset of DSS-induced colitis occurred faster with an abnormal expansion of Proteobacteria in Axl-/- mice than in WT mice. These findings suggest that a lack of Axl signaling exacerbates colitis by inducing aberrant compositions of the gut microbiota in conjunction with an inflammatory gut microenvironment. In conclusion, the data demonstrated that Axl signaling could ameliorate the pathogenesis of colitis by preventing dysbiosis of gut microbiota. Therefore, Axl may act as a potential novel biomarker for IBD and can be a potential candidate for the prophylactic or therapeutic target of diverse microbiota dysbiosis-related diseases.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Camundongos , Animais , Disbiose/induzido quimicamente , Doenças Inflamatórias Intestinais/microbiologia , Proteobactérias , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/microbiologia
11.
Biochem Biophys Res Commun ; 428(1): 50-5, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23063979

RESUMO

Vascular calcification is a hallmark of cardiovascular disease. Interleukin-24 (IL-24) has been known to suppress tumor progression in a variety of human cancers. However, the role of IL-24 in the pathophysiology of diseases other than cancer is unclear. We investigated the role of IL-24 in vascular calcification. IL-24 was applied to a ß-glycerophosphate (ß-GP)-induced rat vascular smooth muscle cell (VSMC) calcification model. In this study, IL-24 significantly inhibited ß-GP-induced VSMC calcification, as determined by von Kossa staining and calcium content. The inhibitory effect of IL-24 on VSMC calcification was due to the suppression of ß-GP-induced apoptosis and expression of calcification and osteoblastic markers. In addition, IL-24 abrogated ß-GP-induced activation of the Wnt/ß-catenin pathway, which plays a key role in the pathogenesis of vascular calcification. The specificity of IL-24 for the inhibition of VSMC calcification was confirmed by using a neutralizing antibody to IL-24. Our results suggest that IL-24 inhibits ß-GP-induced VSMC calcification by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/ ß-catenin pathway. Our study may provide a novel mechanism of action of IL-24 in cardiovascular disease and indicates that IL-24 is a potential therapeutic agent in VSMC calcification.


Assuntos
Apoptose , Interleucinas/fisiologia , Calcificação Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Glicerofosfatos/farmacologia , Humanos , Interleucinas/antagonistas & inibidores , Interleucinas/farmacologia , Masculino , Músculo Liso Vascular , Osteoblastos/metabolismo , Ratos , Ratos Sprague-Dawley , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
12.
Pharmacology ; 90(5-6): 332-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23052189

RESUMO

BACKGROUND/AIM: The abnormal growth of vascular smooth muscle cells (VSMCs) induced by reactive oxygen species (ROS) is considered a major pathogenic process in vascular diseases. Interleukin (IL)-24 specifically inhibits cancer cell growth through the induction of cell cycle arrest and apoptosis. However, the role of IL-24 in ROS-induced VSMC growth has not yet been investigated. METHODS: An MTT assay, gene expression analysis, flow cytometry and a scratch wound healing assay were performed to determine the anti-growth effects of IL-24 in H(2)O(2)-treated mouse vascular aortic smooth muscle (MOVAS) cells. To elucidate the effect of IL-24 on ROS-induced signaling, Western blot analysis was employed. RESULTS: IL-24 inhibited the growth of normal MOVAS cells treated with H(2)O(2) by inducing a cell cycle arrest at the G(0)/G(1) phase through the regulation of p21 and cyclin D1. Furthermore, IL-24 suppressed mRNA expression of vascular endothelial growth factor and platelet-derived growth factor and subsequently decreased the level of cell migration in response to H(2)O(2). Interestingly, IL-24 attenuated the H(2)O(2)-induced ROS production by reducing the mitochondrial H(2)O(2) production and enhancing the expression of antioxidant enzymes. We also showed that the ability of H(2)O(2) to induce the PI3K/Akt and Erk signaling pathways was blocked by IL-24. CONCLUSION: These findings suggest a novel mechanism in which IL-24 suppresses the growth of normal VSMCs by inhibiting H(2)O(2)-induced ROS production through the regulation of mitochondrial ROS production and expression of antioxidant enzymes.


Assuntos
Interleucinas/fisiologia , Miócitos de Músculo Liso/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Aging Cell ; 21(5): e13623, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35474599

RESUMO

Neuroinflammation is considered one of major factors in the pathogenesis of Alzheimer's disease (AD). In particular, inflammasome activation, including NLRP3 inflammasome in microglia, is regarded as fundamental for the pro-inflammatory response of immune cells. However, the precise molecular mechanism through which the NLRP3 inflammasome is associated with AD pathologies remains unclear. Here, we show that amyloid-ß activates the NLRP3 inflammasome in microglia by activating Syk and inhibiting AMPK. Deactivated AMPK induces metabolic dysregulation, mitochondrial fragmentation, and reactive oxygen species formation, leading to the activation of the NLRP3 inflammasome. In addition, flufenamic acid (FA), a member of non-steroidal anti-inflammatory drugs, was found to effectively inhibit activation of the microglial NLRP3 inflammasome by regulating Syk and AMPK. Importantly, FA has marked therapeutic effects on major AD pathologies and memory function in vivo in microglia-dependent way. All together, these findings demonstrate the molecular mechanism of microglial NLRP3 inflammasome activation by amyloid-ß, which acts as an important mediator of neuroinflammation. Also, we suggest that repurposing of FA for inhibiting microglial activation of the NLRP3 inflammasome is a potential treatment for AD.


Assuntos
Doença de Alzheimer , Inflamassomos , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinase Syk/metabolismo , Quinase Syk/farmacologia , Quinase Syk/uso terapêutico
14.
Sci Rep ; 12(1): 9723, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697846

RESUMO

The production of pharmacological vaccines in plants has been an important goal in the field of plant biotechnology. GA733-2, the protein that is also known as colorectal carcinoma (CRC)-associated antigen, is a strong candidate to produce a colorectal cancer vaccine. Tomato is the one of the major targets for production of an edible vaccine, as tomato is a fruit consumed in fresh form. It also contains high content of vitamins that aid activation of immune response. In order to develop an edible colorectal cancer vaccine, the transgene rGA733-Fc that encodes a fusion protein of GA733-2, the fragment crystallizable (Fc) domain, and the ER retention motif (rGA733-Fc) was introduced into tomato plants (Solanum lycopersicum cv. Micro-Tom). The transgenic plants producing rGA733-Fc (rGA733-FcOX) protein were screened based on stable integration of transgene expression cassette and expression level of rGA733-Fc protein. Further glycosylation pattern analysis revealed that plant derived rGA733-Fc protein contains an oligomannose glycan structure, which is a typical glycosylation pattern found on ER-processing proteins. The red fruits of rGA733-FcOX transgenic tomato plants containing approximately 270 ng/g FW of rGA733-Fc protein were orally administered to C57BL/6 mice. Oral administration of tomato fruits of the rGA733-Fc expressing transgenic plants delayed colorectal cancer growth and stimulated immune responses compared to oral administration of tomato fruits of the h-Fc expressing transgenic plants in the C57BL/6J mice. This is the first study showing the possibility of producing an edible colorectal cancer vaccine using tomato plants. This research would be helpful for development of plant-derived cancer edible vaccines.


Assuntos
Neoplasias Colorretais , Solanum lycopersicum , Animais , Antígenos de Neoplasias , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Frutas/genética , Frutas/metabolismo , Imunoterapia , Solanum lycopersicum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plantas Geneticamente Modificadas/metabolismo
15.
Plants (Basel) ; 11(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214853

RESUMO

Particulate matter (PM) exposure may cause adverse health effects such as respiratory disorders. We evaluated the protective effects of various Opuntia ficus-indica (OFI) extracts on airway inflammation associated with exposure to PM10D with an aerodynamic diameter <10 µm (PM10) and diesel exhaust particles (DEP). BALB/c mice were exposed to PM10D via intranasal tracheal injection three times over a period of 12 days and various OFI extracts (water, 30% ethanolic, or 50% ethanolic extracts) were administered orally for 12 days. All OFI extracts suppressed neutrophil infiltration and the number of immune cells (CD3+/CD4+, CD3+/CD8+, and Gr-1+/CD11b) in bronchoalveolar lavage fluid (BALF) and lungs. OFI extracts decreased the expression of cytokines and chemokines, including chemokine (C-X-C motif) ligand (CXCL)-1, interleukin (IL)-17, macrophage inflammatory protein-2, tumor necrosis factor (TNF)-α, cyclooxygenase-2, IL-1α, IL-1ß, IL-5, IL-6, transient receptor potential cation channel subfamily V member 1, and mucin 5AC, and inhibited IRAK-1, TNF-α, and CXCL-1 localization in BALF and lungs of mice with PM10D-induced airway inflammation. Serum asymmetric and symmetric dimethyl arginine levels were also decreased by OFI extracts treatment. Moreover, all OFI extracts restored histopathological damage in the trachea and lungs of mice with PM10D-induced airway inflammation. These results indicate that OFI extracts may be used to prevent and treat airway inflammation and respiratory diseases.

16.
Biochem Biophys Res Commun ; 409(4): 792-8, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21621523

RESUMO

Major histocompatibility complex (MHC) class I is a major host defense mechanism against viral infections such as type 16 and type 18 of the human papillomavirus (HPV). Here, we found that the E6 oncogene from HPV16, but not HPV18, suppressed MHC I expression. Ectopic expression of HPV16E6 in HeLa cells, which are infected with HPV18, suppressed MHC I expression, and that knockdown by antisense or siRNA of the HPV16E6 strongly enhanced MHC I expression in Caski cells, which are infected with HPV18, but not HPV16. The expression of HPV16E6 strongly enhanced cellular resistance to cytotoxic T lymphocytes (CTLs)-mediated lytic activity, and knockdown of HPV16E6 by antisense had the opposite effect. The regulation of HPV16E6-mediated MHC I suppression might be through the regulation of lymphotoxin (LT) and its receptor, LTßR. In addition, cells from the spleen and liver of LTα- or LTßR-deficient mice showed increased MHC I expression. Overall, these results demonstrated that the E6 oncogene of HPV16 might play an important role in cell transformation and cancer development through LT-mediated MHC I downregulation in humans.


Assuntos
Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Papillomavirus Humano 16/genética , Linfotoxina-alfa/genética , Linfotoxina-beta/genética , Proteínas Oncogênicas Virais/genética , Proteínas Repressoras/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Animais , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Antígenos de Histocompatibilidade Classe I/imunologia , Papillomavirus Humano 18/genética , Humanos , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Regulação para Cima , Neoplasias do Colo do Útero/imunologia
17.
J Korean Med Sci ; 26(2): 222-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21286013

RESUMO

Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that is easily introduced to humans via consumption of grilled or smoked meat. BaP causes harmful oxidative effects on cell development, growth and survival through an increase in membrane lipid peroxidation, oxidative DNA damage and mutagenesis. Therefore, the present study was conducted to evaluate the synergistic effects of BaP on oxidative stress in hepatic tumors. In this study, we established a hepatic tumor model by injecting rat hepatoma N1-S1 cells into healthy rats. Changes in the abundance of heat shock proteins (HSPs), antioxidant enzymes and pro-inflammatory cytokines were then investigated by western blot analysis. In addition, we examined changes in oxidative stress levels. Injection of N1-S1 cells or concomitant injection of BaP and N1-S1 cells resulted in the formation of hepatic tumors at the injection site. Evaluation of rat plasma reveals that hepatic tumors induced by BaP and N1-S1 cells expresses higher levels of Hsp27, superoxide dismutase (SOD), and tumor necrosis factor-α (TNF-α) when compared to those induced by N1-S1 cells only. The collective results of this study suggest that BaP exerts synergistic effects on the expression of HSP, cytokines and antioxidant enzymes in hepatic tumors induced by rat hepatoma N1-S1 cells.


Assuntos
Antioxidantes/metabolismo , Benzo(a)pireno/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439575

RESUMO

Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC-MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.

19.
ChemSusChem ; 14(15): 3030, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34272832

RESUMO

Invited for this month's cover is the joint research group of Prof. Chan Beum Park at the Korea Advanced Institute of Science and Technology (KAIST) and Prof. Chul-Ho Yun at the Chonnam National University (CNU). The image shows how the use of a natural photosensitizer, flavin mononucleotide, and visible light can lead to a cost-effective, green, and sustainable process for P450-catalyzed reactions in a whole-cell system. The Communication itself is available at 10.1002/cssc.202100944.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Mononucleotídeo de Flavina/química , Fármacos Fotossensibilizantes/química , Catálise , Clorzoxazona/química , Escherichia coli/metabolismo , Hidroxilação , Luz , Nitrofenóis/química , Oxirredução , Fotossíntese , Energia Solar
20.
ChemSusChem ; 14(15): 3054-3058, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085413

RESUMO

Photobiocatalysis is a green platform for driving redox enzymatic reactions using solar energy, not needing high-cost cofactors and redox partners. Here, a visible light-driven whole-cell platform for human cytochrome P450 (CYP) photobiocatalysis was developed using natural flavins as a photosensitizer. Photoexcited flavins mediate NADPH/reductase-free, light-driven biocatalysis by human CYP2E1 both in vitro and in the whole-cell systems. In vitro tests demonstrated that the photobiocatalytic activity of CYP2E1 is dependent on the substrate type, the presence of catalase, and the acid type used as a sacificial electron donor. A protective effect of catalase was found against the inactivation of CYP2E1 heme by H2 O2 and the direct transfer of photo-induced electrons to the heme iron not by peroxide shunt. Furthermore, the P450 photobiocatalysis in whole cells containing human CYPs 1A1, 1A2, 1B1, and 3A4 demonstrated the general applicability of the solar-powered, flavin-mediated P450 photobiocatalytic system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa