Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 315-324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867130

RESUMO

Changes in the sea surface temperature (SST) pattern in the tropical Pacific modulate radiative feedbacks to greenhouse gas forcing, the pace of global warming and regional climate impacts. Therefore, elucidating the drivers of the pattern is critically important for reducing uncertainties in future projections. However, the causes of observed changes over recent decades, an enhancement of the zonal SST contrast coupled with a strengthening of the Walker circulation, are still debated. Here we focus on the role of external forcing and review existing mechanisms of the forced response categorized as either an energy perspective that adopts global and hemispheric energy budget constraints or a dynamical perspective that examines the atmosphere-ocean coupled processes. We then discuss their collective and relative contributions to the past and future SST pattern changes and propose a narrative that reconciles them. Although definitive evidence is not yet available, our assessment suggests that the zonal SST contrast has been dominated by strengthening mechanisms in the past, but will shift towards being dominated by weakening mechanisms in the future. Finally, we present opportunities to resolve the model-observations discrepancy regarding the recent trends.

2.
Proc Natl Acad Sci U S A ; 121(21): e2313797121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709948

RESUMO

During 2010 to 2020, Northeast Pacific (NEP) sea surface temperature (SST) experienced the warmest decade ever recorded, manifested in several extreme marine heatwaves, referred to as "warm blob" events, which severely affect marine ecosystems and extreme weather along the west coast of North America. While year-to-year internal climate variability has been suggested as a cause of individual events, the causes of the continuous dramatic NEP SST warming remain elusive. Here, we show that other than the greenhouse gas (GHG) forcing, rapid aerosol abatement in China over the period likely plays an important role. Anomalous tropospheric warming induced by declining aerosols in China generated atmospheric teleconnections from East Asia to the NEP, featuring an intensified and southward-shifted Aleutian Low. The associated atmospheric circulation anomaly weakens the climatological westerlies in the NEP and warms the SST there by suppressing the evaporative cooling. The aerosol-induced mean warming of the NEP SST, along with internal climate variability and the GHG-induced warming, made the warm blob events more frequent and intense during 2010 to 2020. As anthropogenic aerosol emissions continue to decrease, there is likely to be an increase in NEP warm blob events, disproportionately large beyond the direct radiative effects.

3.
Proc Natl Acad Sci U S A ; 120(30): e2300881120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459536

RESUMO

Since the beginning of the satellite era, Southern Ocean sea surface temperatures (SSTs) have cooled, despite global warming. While observed Southern Ocean cooling has previously been reported to have minimal impact on the tropical Pacific, the efficiency of this teleconnection has recently shown to be mediated by subtropical cloud feedbacks that are highly model-dependent. Here, we conduct a coupled model intercomparison of paired ensemble simulations under historical radiative forcing: one with freely evolving SSTs and the other with Southern Ocean SST anomalies constrained to follow observations. We reveal a global impact of observed Southern Ocean cooling in the model with stronger (and more realistic) cloud feedbacks, including Antarctic sea-ice expansion, southeastern tropical Pacific cooling, northward-shifted Hadley circulation, Aleutian low weakening, and North Pacific warming. Our results therefore suggest that observed Southern Ocean SST decrease might have contributed to cooler conditions in the eastern tropical Pacific in recent decades.

4.
Proc Natl Acad Sci U S A ; 119(34): e2200514119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969773

RESUMO

Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought.


Assuntos
Modelos Teóricos , Oceanos e Mares , Clima Tropical , Oceano Pacífico , Temperatura
5.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26438278

RESUMO

We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed.

6.
Nat Commun ; 15(1): 18, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168125

RESUMO

Observational evidence and climate model experiments suggest a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) since the mid-1990s. Increased greenhouse gases and the declined anthropogenic aerosols (AAs) over North America and Europe are believed to contribute to the AMOC slowdown. Asian AAs continue to increase but the associated impact has been unclear. Using ensembles of climate simulations, here we show that the radiative cooling resulting from increased Asian AAs drives an AMOC reduction. The increased AAs over Asia generate circumglobal stationary Rossby waves in the northern midlatitudes, which shift the westerly jet stream southward and weaken the subpolar North Atlantic westerlies. Consequently, reduced transport of cold air from North America hinders water mass transformation in the Labrador Sea and thus contributes to the AMOC slowdown. The link between increased Asian AAs and an AMOC slowdown is supported by different models with different configurations. Thus, reducing emissions of Asian AAs will not only lower local air pollution, but also help stabilize the AMOC.

7.
Sci Adv ; 9(19): eadf5059, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163600

RESUMO

Most state-of-art models project a reduced equatorial Pacific east-west temperature gradient and a weakened Walker circulation under global warming. However, the causes of this robust projection remain elusive. Here, we devise a series of slab ocean model experiments to diagnostically decompose the global warming response into the contributions from the direct carbon dioxide (CO2) forcing, sea ice changes, and regional ocean heat uptake. The CO2 forcing dominates the Walker circulation slowdown through enhancing the tropical tropospheric stability. Antarctic sea ice changes and local ocean heat release are the dominant drivers for reduced zonal temperature gradient over the equatorial Pacific, while the Southern Ocean heat uptake opposes this change. Corroborating our model experiments, multimodel analysis shows that the models with greater Southern Ocean heat uptake exhibit less reduction in the temperature gradient and less weakening of the Walker circulation. Therefore, constraining the tropical Pacific projection requires a better insight into Southern Ocean processes.

8.
Sci Bull (Beijing) ; 66(23): 2405-2411, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654126

RESUMO

Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth's climate. Major emission sources shifted from the western to eastern hemisphere around the 1980s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940-1980 and the zonal shift of aerosol forcing for 1980-2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean-atmosphere interactions, respectively. The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Niña-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.


Assuntos
Atmosfera , Mudança Climática , Aerossóis , Atmosfera/análise , Temperatura Baixa
9.
Sci Adv ; 6(47)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33219035

RESUMO

Walker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude-to-Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations. In the fully coupled system with ocean circulation adjustments, the Walker circulation strengthens in response to extratropical radiative cooling of either hemisphere, associated with the upwelling of colder subsurface water in the eastern equatorial Pacific. By contrast, in the absence of ocean circulation adjustments, the Walker circulation response is sensitive to the forcing hemisphere, due to the blocking effect of the northward-displaced climatological intertropical convergence zone and shortwave cloud radiative effects. Our study implies that energy biases in the extratropics can cause pronounced changes of tropical climate patterns.

10.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819937

RESUMO

The El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

11.
J Adv Model Earth Syst ; 8(4): 1868-1891, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32850005

RESUMO

This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Inter-comparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa