Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(12): e57496, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37916870

RESUMO

Stimulator of interferon genes (STING) is a core DNA sensing adaptor in innate immune signaling. STING activity is regulated by a variety of post-translational modifications (PTMs), including phosphorylation, ubiquitination, sumoylation, palmitoylation, and oxidation, as well as the balance between active and inactive polymer formation. It remains unclear, though, how different PTMs and higher order structures cooperate to regulate STING activity. Here, we report that the mitochondrial ubiquitin ligase MARCH5 (Membrane Associated Ring-CH-type Finger 5, also known as MITOL) ubiquitinates STING and enhances its activation. A long-term MARCH5 deficiency, in contrast, leads to the production of reactive oxygen species, which then facilitate the formation of inactive STING polymers by oxidizing mouse STING cysteine 205. We show that MARCH5-mediated ubiquitination of STING prevents the oxidation-induced STING polymer formation. Our findings highlight that MARCH5 balances STING ubiquitination and polymer formation and its control of STING activation is contingent on oxidative conditions.


Assuntos
Mitocôndrias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Imunidade Inata , Mitocôndrias/metabolismo , Polímeros/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
J Allergy Clin Immunol ; 153(1): 132-145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783432

RESUMO

BACKGROUND: Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE: We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS: Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS: We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS: We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Basófilos , Animais , Camundongos , Basófilos/citologia , Basófilos/metabolismo , Dermatite Atópica/metabolismo , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Interleucina-3/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
3.
Small ; 18(17): e2106648, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297560

RESUMO

Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.


Assuntos
Células Dendríticas , Polímeros , Apresentação de Antígeno , Técnicas de Cultura de Células/métodos , Células Dendríticas/metabolismo , Ativação Linfocitária , Polímeros/metabolismo
4.
RNA Biol ; 17(3): 325-334, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852354

RESUMO

Retinoic acid-inducible gene I (RIG-I) is responsible for innate immunity via the recognition of short double-stranded RNAs in the cytosol. With the clue that G-U wobble base pairs in the influenza A virus's RNA promoter region are responsible for RIG-I activation, we determined the complex structure of RIG-I ΔCARD and a short hairpin RNA with G-U wobble base pairs by X-ray crystallography. Interestingly, the overall helical backbone trace was not affected by the presence of the wobble base pairs; however, the base pair inclination and helical axis angle changed upon RIG-I binding. NMR spectroscopy revealed that RIG-I binding renders the flexible base pair of the influenza A virus's RNA promoter region between the two G-U wobble base pairs even more flexible. Binding to RNA with wobble base pairs resulted in a more flexible RIG-I complex. This flexible complex formation correlates with the entropy-favoured binding of RIG-I and RNA, which results in tighter binding affinity and RIG-I activation. This study suggests that the structure and dynamics of RIG-I are tailored to the binding of specific RNA sequences with different flexibility.


Assuntos
Proteína DEAD-box 58/química , Proteína DEAD-box 58/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Pareamento de Bases , Cristalografia por Raios X , Entropia , Células HEK293 , Humanos , Hidrogênio/química , Interferon gama/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Prótons
5.
Nucleic Acids Res ; 46(17): 9011-9026, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30137501

RESUMO

DExD/H-box helicase 9 (DHX9), or RNA helicase A (RHA), is an abundant multifunctional nuclear protein. Although it was previously reported to act as a cytosolic DNA sensor in plasmacytoid dendritic cells (pDCs), the role and molecular mechanisms of action of DHX9 in cells that are not pDCs during DNA virus infection are not clear. Here, a macrophage-specific knockout and a fibroblast-specific knockdown of DHX9 impaired antiviral innate immunity against DNA viruses, leading to increased virus replication. DHX9 enhanced NF-κB-mediated transactivation in the nucleus, which required its ATPase-dependent helicase (ATPase/helicase) domain, but not the cytosolic DNA-sensing domain. In addition, DNA virus infection did not induce cytoplasmic translocation of nuclear DHX9 in macrophages and fibroblasts. Nuclear DHX9 was associated with a multiprotein complex including both NF-κB p65 and RNA polymerase II (RNAPII) in chromatin containing NF-κB-binding sites. DHX9 was essential for the recruitment of RNAPII rather than NF-κB p65, to the corresponding promoters; this function also required its ATPase/helicase activity. Taken together, our results show a critical role of nuclear DHX9 (as a transcription coactivator) in the stimulation of NF-κB-mediated innate immunity against DNA virus infection, independently of DHX9's DNA-sensing function.


Assuntos
RNA Helicases DEAD-box/genética , DNA Viral/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , NF-kappa B/genética , RNA Polimerase II/genética , Animais , Chlorocebus aethiops , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/imunologia , DNA Viral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Gammaherpesvirinae/genética , Gammaherpesvirinae/crescimento & desenvolvimento , Gammaherpesvirinae/imunologia , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/imunologia , Células-Tronco Embrionárias Murinas/virologia , NF-kappa B/imunologia , Células NIH 3T3 , Cultura Primária de Células , RNA Polimerase II/imunologia , Transdução de Sinais , Células Vero , Replicação Viral
6.
Nucleic Acids Res ; 46(4): 1635-1647, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29373735

RESUMO

Retinoic acid-inducible gene I (RIG-I) recognizes double-stranded viral RNAs (dsRNAs) containing two or three 5' phosphates. A few reports of 5'-PPP-independent RIG-I agonists have emerged, but little is known about the molecular principles underlying their recognition. We recently found that the bent duplex RNA from the influenza A panhandle promoter activates RIG-I even in the absence of a 5'-triphosphate moiety. Here, we report that non-canonical synthetic RNA oligonucleotides containing G-U wobble base pairs that form a bent helix can exert RIG-I-mediated antiviral and anti-tumor effects in a sequence- and site-dependent manner. We present synthetic RNAs that have been systematically modified to enhance their efficacy and we outline the basic principles for engineering RIG-I agonists applicable to immunotherapy.

7.
J Immunol ; 199(9): 3137-3146, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972093

RESUMO

Dendritic cells (DCs) play a critical role in directing immune responses. Previous studies have identified a variety of DC subsets and elucidated their context-dependent functions that parallel those of effector Th cell subsets. However, little is known about the DC subsets responsible for differentiation of Th2 cells governing allergic contact dermatitis. In this study, we sought to determine the DC subset(s) that mediate Th2 priming in hapten-sensitized mice. We induced hapten-specific Th2 differentiation by sensitizing the mice with a single application of FITC dissolved in acetone:dibutyl phthalate, and traced the immune cells responsible for inducing the Th2 differentiation process at the primary stimulation, enabling us to track Th2 priming in vivo and to delete basophils and specific DC subsets. Our analysis revealed that IL-4 was produced in vivo as early as day 3 from CD4+ T cells with a single application of FITC. Basophils, despite producing IL-4 1 d earlier than T cells, were found to be dispensable for Th2 differentiation. Instead, we demonstrated that CD326+ dermal DCs and Langerhans cells were redundantly required for FITC-induced Th2 differentiation in vivo. Moreover, the cooperation of CD326+ Langerhans cells and CD11b+ DCs differentiated naive T cells into Th2 cells in vitro. Collectively, our findings highlight at least two DC subsets that play a critical role in polarizing naive CD4+ T cells to Th2 cells and support a two-hit model for Th2 differentiation.


Assuntos
Antígeno CD11b/imunologia , Diferenciação Celular/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/imunologia , Haptenos/farmacologia , Células de Langerhans/imunologia , Células Th2/imunologia , Animais , Antígeno CD11b/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Molécula de Adesão da Célula Epitelial/genética , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Knockout
8.
Biochem Biophys Res Commun ; 500(2): 497-503, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29673589

RESUMO

Stimulator of IFN genes (STING) is essential for the DNA-sensing innate immune pathway. Recently, evidence is emerging that suggests STING also plays important roles in autoimmunity, cancer therapy, and senescence. Although a multitude of post-translational modifications that regulate the STING pathway have been discovered, the cellular events that guide STING translocation remain unclear. Here, we show, paradoxically, that both BAPTA-AM-mediated calcium depletion and ionomycin-induced calcium elevation suppress STING translocation and STING-mediated IFN-ß production. We demonstrate that the mitochondria fission mediator DRP1 is crucial for ionomycin-induced inhibition of IFN-ß production. Furthermore, knockout of DRP1 suppressed ionomycin-induced increases in calcium as well as mitochondrial fragmentation. Collectively, our findings reveal that the induction of STING signaling is contingent on a fine-tuning of intracellular calcium levels.


Assuntos
Cálcio/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Dinaminas/deficiência , Dinaminas/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Interferon beta/biossíntese , Ionomicina/farmacologia , Camundongos , Células RAW 264.7
9.
FASEB J ; 31(11): 4866-4878, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28729291

RESUMO

The stimulator of IFN genes (STING)-mediated DNA-sensing pathway plays an important role in the innate immune response to pathogen infection, autoimmunity, and cancer; however, its regulatory mechanism has not been fully elucidated, and we do not yet know whether the STING pathway is counter-regulated by other innate immune pathways. Here, we show that the NLRP3-activating agonists, ATP and nigericin, prevent STING pathway activation in association with mitochondrial fragmentation; however, the suppression of the STING pathway and mitochondria fission were not dependent on NLRP3 or potassium efflux. Although nigericin-induced mitochondria fission was rescued by knockdown of either dynamin-related protein 1 or TBC1 domain family member 15 (TBC1D15), which are two distinct mitochondria fission regulators, only TBC1D15 restored the activity of the STING pathway, which indicates that inflammasome-activating signals curtail STING pathway activation via TBC1D15. Finally, we found that deficiency of mitofusin (MFN) 1, a mediator of mitochondrial fusion, inhibited STING pathway activation, which leads to a decrease in the induction of IFN-ß and its inducible gene, ISG56, in conjunction with diminished activation of the signaling molecules, TANK-binding kinase 1 and IFN regulatory factor 3, that are downstream of STING. These results highlight the crucial role of MFN1 in maintaining the competency of the STING pathway. Collectively, our findings reveal that mitochondrial dynamics regulators modulate the activation of the STING signaling pathway.-Kwon, D., Park, E., Kang, S.-J. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Nigericina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , GTP Fosfo-Hidrolases/genética , Proteínas Ativadoras de GTPase/genética , Interferon beta/genética , Interferon beta/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 44(17): 8407-16, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27288441

RESUMO

Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5'-triphosphate (5'-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5'-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5'-PPP moiety for RIG-I activation.


Assuntos
Proteína DEAD-box 58/metabolismo , Vírus da Influenza A/genética , Conformação de Ácido Nucleico , Polifosfatos/metabolismo , RNA Viral/química , Pareamento de Bases , Calorimetria , Proteína DEAD-box 58/química , Humanos , Hidrogênio/metabolismo , Interferon beta/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Estabilidade de RNA , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos , Termodinâmica
11.
Nano Lett ; 17(5): 2747-2756, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422506

RESUMO

Over the past decade, mesoporous silica nanoparticles (MSNs) smaller than 200 nm with a high colloidal stability have been extensively studied for systemic drug delivery. Although small molecule delivery via MSNs has been successful, the encapsulation of large therapeutic biomolecules, such as proteins or DNA, is limited due to small pore size of the conventional MSNs obtained by soft-templating. Here, we report the synthesis of mesoporous silica nanoparticles with extra-large pores (XL-MSNs) and their application to in vivo cytokine delivery for macrophage polarization. Uniform, size-controllable XL-MSNs with 30 nm extra-large pores were synthesized using organic additives and inorganic seed nanoparticles. XL-MSNs showed significantly higher loadings for the model proteins with different molecular weights compared to conventional small pore MSNs. XL-MSNs were used to deliver IL-4, which is an M2-polarizing cytokine and very quickly degraded in vivo, to macrophages and polarize them to anti-inflammatory M2 macrophages in vivo. XL-MSNs induced a low level of reactive oxygen species (ROS) production and no pro-inflammatory cytokines in bone marrow-derived macrophages (BMDMs) and in mice injected intravenously with XL-MSNs. We found that the injected XL-MSNs were targeted to phagocytic myeloid cells, such as neutrophils, monocytes, macrophages, and dendritic cells. Finally, we demonstrated that the injection of IL-4-loaded XL-MSNs successfully triggered M2 macrophage polarization in vivo, suggesting the clinical potential of XL-MSNs for modulating immune systems via targeted delivery of various cytokines.


Assuntos
Portadores de Fármacos/química , Interleucina-4/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/química , Animais , Linhagem Celular , Polaridade Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Interleucina-4/administração & dosagem , Macrófagos/fisiologia , Camundongos , Nanopartículas/toxicidade , Porosidade , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem Biophys Res Commun ; 493(1): 737-743, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28859978

RESUMO

Besides its important role in innate immune response to DNA virus infection, the regulatory function of STING in autoimmunity and cancer is emerging. Recently, multiple mechanisms regulating the activity of the STING pathway have been revealed. Previous study showed that carbonyl cyanide 3-chlorophenylhydrazone (CCCP), the protonophore, inhibited STING-mediated IFN-ß production via disrupting mitochondrial membrane potential (MMP). However, how MMP dissipation leads to the suppression of the STING pathway remains unknown. Here, we show that CCCP inhibits activation of STING and its downstream signaling molecules, TBK1 and IRF3, but not STING translocation to the perinuclear region. We found that CCCP impairs the interaction between STING and TBK1 and concomitantly triggers mitochondria fission. Importantly, the knockout of the crucial mitochondria fission regulator Drp1 restored the STING activity, indicating that CCCP down-modulates the STING pathway through DRP1-mediated mitochondria fragmentation. Our findings highlight the coupling of the STING signaling platform to mitochondria dynamics.


Assuntos
DNA/metabolismo , Hidrazonas/administração & dosagem , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Animais , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Immunity ; 29(5): 819-33, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19006696

RESUMO

An early granulomatous response, characterized by collections of white blood cells at foci surrounding pathogens, occurs after infection by many intracellular organisms, including Listeria, but how these clusters become organized and for what purpose remain poorly understood. Here, we showed that dendritic cell (DC) activation by Listeria nucleated rapid clustering of innate cells, including granulocytes, natural killer (NK) cells, and monocytes, to sites of bacteria propagation where interleukin-12 was expressed in the spleen. Clustered NK cells expressed interferon-gamma (IFN-gamma), which was necessary for the activation and maturation of colocalized monocytes to tumor necrosis factor- and inducible nitric oxide synthase-producing DCs (TipDCs). NK cell clustering was necessary for IFN-gamma production and required pertussis-toxin-sensitive recruitment, in part mediated by the chemokine receptor CCR5, and MyD88 adaptor-mediated signaling. Thus, spatial organization of the immune response by DCs between 6 and 24 hr ensures functional activation of innate cells, which restricts pathogens before adaptive immunity is fully activated.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Baço/imunologia , Animais , Células Dendríticas/citologia , Células Dendríticas/microbiologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-12/metabolismo , Células Matadoras Naturais/citologia , Listeriose/microbiologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Transdução de Sinais , Baço/citologia , Baço/microbiologia
14.
Opt Express ; 23(12): 15792-805, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193558

RESUMO

Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

16.
Discov Immunol ; 3(1): kyae003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567293

RESUMO

Basophils are the rarest leukocytes, but they have essential roles in protection against helminths, allergic disorders, autoimmune diseases, and some cancers. For years, the clinical significance of basophils has been neglected because of the lack of proper experimental tools to study them. The development of basophil-specific antibodies and animal models, along with genomic advances like single-cell transcriptomics, has greatly enhanced our understanding of basophil biology. Recent discoveries regarding basophils prompted us to write this review, emphasizing the basophil developmental pathway. In it, we chronologically examine the steps of basophil development in various species, which reveals the apparent advent of basophils predating IgE and basophil's IgE-independent regulatory role in primitive vertebrates. Then, we cover studies of basophil development in adult bone marrow, and compare those of murine and human basophils, introducing newly identified basophil progenitors and mature basophil subsets, as well as the transcription factors that regulate the transitions between them. Last, we discuss the heterogeneity of tissue-resident basophils, which may develop through extramedullary hematopoiesis. We expect that this review will contribute to a deeper understanding of basophil biology from the intricate aspects of basophil development and differentiation, offering valuable insights for both researchers and clinicians.

18.
Exp Mol Med ; 54(10): 1756-1765, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229591

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes individuals to various inflammatory responses, has been reported to be associated with COVID-19 severity. However, the immunological signature and the exact gene expression program by which the presence of CHIP exerts its clinical impact on COVID-19 remain to be elucidated. In this study, we generated a single-cell transcriptome landscape of severe COVID-19 according to the presence of CHIP using peripheral blood mononuclear cells. Patients with CHIP exhibited a potent IFN-γ response in exacerbating inflammation, particularly in classical monocytes, compared to patients without CHIP. To dissect the regulatory mechanism of CHIP (+)-specific IFN-γ response gene expression in severe COVID-19, we identified DNMT3A CHIP mutation-dependent differentially methylated regions (DMRs) and annotated their putative target genes based on long-range chromatin interactions. We revealed that CHIP mutant-driven hypo-DMRs at poised cis-regulatory elements appear to facilitate the CHIP (+)-specific IFN-γ-mediated inflammatory immune response. Our results highlight that the presence of CHIP may increase the susceptibility to hyperinflammation through the reorganization of chromatin architecture, establishing a novel subgroup of severe COVID-19 patients.


Assuntos
COVID-19 , Hematopoiese Clonal , Humanos , Transcriptoma , Hematopoese/genética , COVID-19/genética , Leucócitos Mononucleares , Mutação , Cromatina/genética , Perfilação da Expressão Gênica
19.
J Immunol ; 182(8): 4784-91, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342656

RESUMO

CD1d is an MHC class I-like membrane glycoprotein that presents lipid Ags to NKT cells. Despite intensive biochemical, genetic, and structural studies, the endogenous lipids associated with CD1d remain poorly defined because of the biochemical challenges posed by their hydrophobic nature. In this study, we report the generation of a protease-cleavable CD1d variant with a similar trafficking pattern to wild-type CD1d that can be purified in the absence of detergent and allows the characterization of the naturally associated lipids. In addition, we used soluble variants of CD1d that are secreted or retained in the endoplasmic reticulum (ER) to survey their acquired lipids. By using multiple mass spectrometry methods, we found that CD1d retained in the ER is predominantly loaded with the most abundant phospholipid in the cell, phosphatidyl choline, while the protease cleavable version of CD1d contains bound sphingomyelin and lysophospholipids in addition to phosphatidyl choline. The secreted soluble version of CD1d, in contrast, lacks detectable phosphatidyl choline and the only detectable associated lipid is sphingomyelin. The data suggest that, in the absence of infection or stress, CD1d molecules survey the ER, the secretory pathway, and the endocytic pathway, and accumulate the most abundantly available lipids present in these compartments.


Assuntos
Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Produtos Biológicos/imunologia , Produtos Biológicos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/imunologia , Antígenos CD1d/genética , Antígenos CD1d/isolamento & purificação , Células HeLa , Humanos , Ligantes , Peptídeo Hidrolases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
ACS Biomater Sci Eng ; 7(9): 4446-4453, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34435775

RESUMO

Multiple sclerosis (MS) treatment via cytokine-mediated immunomodulation has been hampered by the difficulty with which cytokines can be stably and noninvasively delivered to the central nervous system. Here, we show that interleukin (IL)-13 packaged in extra-large-pore mesoporous silica nanoparticles (XL-MSNs) is protected from degradation and directs the alternative activation of macrophages both in vitro and in vivo. Furthermore, the noninvasive intranasal delivery of IL-13-loaded XL-MSNs ameliorated the symptoms of experimental autoimmune encephalomyelitis, a murine model of MS, accompanied by the induction of chemokines orchestrating immune cell infiltration. These results demonstrate the therapeutic potential of IL-13-loaded XL-MSNs for MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Nanopartículas , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Interleucina-13 , Macrófagos , Camundongos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa