Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834976

RESUMO

The use of a rehabilitation approach that promotes regeneration has the potential to improve the efficacy of pro-regenerative therapies and maximize functional outcomes in the treatment of volumetric muscle loss (VML). An adjunct antifibrotic treatment could further enhance functional gains by reducing fibrotic scarring. This study aimed to evaluate the potential synergistic effects of losartan, an antifibrotic pharmaceutical, paired with a voluntary wheel running rehabilitation strategy to enhance a minced muscle graft (MMG) pro-regenerative therapy in a rodent model of VML. The animals were randomly assigned into four groups: (1) antifibrotic with rehabilitation, (2) antifibrotic without rehabilitation, (3) vehicle treatment with rehabilitation, and (4) vehicle treatment without rehabilitation. At 56 days, the neuromuscular function was assessed, and muscles were collected for histological and molecular analysis. Surprisingly, we found that the losartan treatment decreased muscle function in MMG-treated VML injuries by 56 days, while the voluntary wheel running elicited no effect. Histologic and molecular analysis revealed that losartan treatment did not reduce fibrosis. These findings suggest that losartan treatment as an adjunct therapy to a regenerative rehabilitation strategy negatively impacts muscular function and fails to promote myogenesis following VML injury. There still remains a clinical need to develop a regenerative rehabilitation treatment strategy for traumatic skeletal muscle injuries. Future studies should consider optimizing the timing and duration of adjunct antifibrotic treatments to maximize functional outcomes in VML injuries.


Assuntos
Medicina , Doenças Musculares , Animais , Fibrose , Losartan , Atividade Motora , Músculo Esquelético/patologia , Doenças Musculares/patologia
2.
J Funct Biomater ; 15(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921533

RESUMO

Treatment of volumetric muscle loss (VML) faces challenges due to its unique pathobiology and lower priority in severe musculoskeletal injury management. Consequently, a need exists for multi-stage VML treatment strategies to accommodate delayed interventions owing to comorbidity management or prolonged casualty care in combat settings. To this end, polyvinyl alcohol (PVA) was used at concentrations of 5%, 7.5%, and 10% to generate provisional muscle void fillers (MVFs) of varying stiffness values (1.125 kPa, 3.700 kPa, and 7.699 kPa) to stabilize VML injuries as part of a two-stage approach. These were implanted into a rat model for a duration of 4 weeks, then explanted and either left untreated (control) or treated through minced muscle grafting (MMG). Additional benchmarks included acute MMG and unrepaired groups. At the MVF explant, the 7.5% PVA group exhibited superior neuromuscular function compared to the 5% and 10% PVA groups, the least fibrosis, and the largest median myofiber size among all groups at the 12-week endpoint. Despite the 7.5% PVA's superiority amongst the two-stage treatment groups, neuromuscular function was neither improved nor impaired relative to acute treatment benchmarks. This suggests that the future success of a two-stage VML treatment strategy will necessitate a more effective definitive intervention.

3.
Mater Today Bio ; 22: 100781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37736246

RESUMO

Volumetric muscle loss (VML) represents a devastating extremity injury which leads to chronic functional deficits and disability and is unrecoverable through normal healing pathways. When left untreated, the VML pathophysiology creates many challenges towards successful treatment, such as altered residual muscle architecture, excessive fibrosis, and contracture(s). As such, innovative approaches and technologies are needed to prevent or reverse these adverse sequelae. Development of a rationally designed biomaterial technology which is intended to be acutely placed within a VML defect - i.e., to serve as a muscle void filler (MVF) by maintaining the VML defect - could address this clinical unmet need by preventing these adverse sequelae as well as enabling multi-staged treatment approaches. To that end, three biomaterials were evaluated for their ability to serve as a provisional MVF treatment intended to stabilize a VML defect in a rat model for an extended period (28 days): polyvinyl alcohol (PVA), hyaluronic acid and polyethylene glycol combination (HA + PEG), and silicone, a clinically used soft tissue void filler. HA + PEG biomaterial showed signs of deformation, while both PVA and silicone did not. There were no differences between treatment groups for their effects on adjacent muscle fiber count and size distribution. Not surprisingly, silicone elicited robust fibrotic response resulting in a fibrotic barrier with a large infiltration of macrophages, a response not seen with either the PVA or HA + PEG. Taken together, PVA was found to be the best material to be used as a provisional MVF for maintaining VML defect volume while minimizing adverse effects on the surrounding muscle.

4.
J Am Heart Assoc ; 8(5): e011227, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807241

RESUMO

Background Pulmonary arterial hypertension ( PAH ) is a serious disease without cure. Elevated pulmonary vascular resistance puts strain on the right ventricle ( RV ) and patients die of RV failure. Subjecting Sprague-Dawley rats to SU 5416 injection and hypoxia promotes severe PAH with pulmonary vascular lesions similar to human disease and has been well utilized to investigate pulmonary vascular pathology. However, despite exhibiting severe RV fibrosis, these rats do not die. Recently, subjecting Fischer ( CDF ) rats to the same treatment to promote PAH was found to result in mortality. Thus, the present study performed detailed morphological characterizations of Fischer rats with PAH . Methods and Results Rats were subjected to SU 5416 injection and hypoxia for 3 weeks, followed by maintenance in normoxia. More than 90% of animals died within 6 weeks of the SU 5416 injection. Necropsy revealed the accumulation of fluid in the chest cavity, right ventricular hypertrophy and dilatation, hepatomegaly, and other indications of congestive heart failure. Time course studies demonstrated the progressive thickening of pulmonary arteries with the formation of concentric lamellae and plexiform lesions as well as RV fibrosis in PAH rats. Transmission electron microscopy demonstrated the destruction of the myofilaments, T-tubules, and sarcoplasmic reticulum. RV mitochondrial damage and fission were found in Fischer rats, but not in Sprague-Dawley rats, with PAH . Conclusions These results suggest that the destruction of RV mitochondria plays a role in the mechanism of PAH -induced death. The SU 5416/hypoxia model in Fischer rats should be useful for further investigating the mechanism of RV failure and finding effective therapeutic agents to increase the survival of PAH patients.


Assuntos
Insuficiência Cardíaca/etiologia , Ventrículos do Coração/ultraestrutura , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Hipertensão Arterial Pulmonar/complicações , Disfunção Ventricular Direita/etiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metabolômica , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Especificidade da Espécie , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa