Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 26(3-4): 86-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643205

RESUMO

The manufacture of large quantities of high-quality DNA is a major bottleneck in the production of viral vectors for gene therapy. Touchlight Genetics has developed a proprietary abiological technology that addresses the major issues in commercial DNA supply. The technology uses 'rolling-circle' amplification to produce large quantities of concatameric DNA that is then processed to create closed linear double-stranded DNA by enzymatic digestion. This novel form of DNA, Doggybone™ DNA (dbDNA™), is structurally distinct from plasmid DNA. Here we compare lentiviral vectors production from dbDNA™ and plasmid DNA. Lentiviral vectors were administered to neonatal mice via intracerebroventricular injection. Luciferase expression was quantified in conscious mice continually by whole-body bioluminescent imaging. We observed long-term luciferase expression using dbDNA™-derived vectors, which was comparable to plasmid-derived lentivirus vectors. Here we have demonstrated that functional lentiviral vectors can be produced using the novel dbDNA™ configuration for delivery in vitro and in vivo. Importantly, this could enable lentiviral vector packaging of complex DNA sequences that have previously been incompatible with bacterial propagation systems, as dbDNA™ technology could circumvent such restrictions through its phi29-based rolling-circle amplification.


Assuntos
Vetores Genéticos/genética , Vetores Genéticos/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , DNA/genética , Terapia Genética/métodos , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Camundongos , Plasmídeos/genética , Transfecção
2.
Cancer Immunol Immunother ; 67(4): 627-638, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330557

RESUMO

Vaccination with DNA that encodes cancer antigens is a simple and convenient way to raise immunity against cancer and has already shown promise in the clinical setting. Conventional plasmid DNA is commonly used which together with the encoded antigen also includes bacterial immunostimulatory CpG motifs to target the DNA sensor Toll-like receptor 9. Recently DNA vaccines using doggybone DNA (dbDNA™), have been developed without the use of bacteria. The cell-free process relies on the use of Phi29 DNA polymerase to amplify the template followed by protelomerase TelN to complete individual closed linear DNA. The resulting DNA contains the required antigenic sequence, a promoter and a poly A tail but lacks bacterial sequences such as an antibiotic resistance gene, prompting the question of immunogenicity. Here we compared the ability of doggybone DNA vaccine with plasmid DNA vaccine to induce adaptive immunity using clinically relevant oncotargets E6 and E7 from HPV. We demonstrate that despite the inability to trigger TLR9, doggybone DNA was able to induce similar levels of cellular and humoral immunity as plasmid DNA, with suppression of established TC-1 tumours.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunidade Celular/imunologia , Neoplasias Pulmonares/imunologia , Plasmídeos/imunologia , Receptor Toll-Like 9/imunologia , Vacinas de DNA/imunologia , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/administração & dosagem , Plasmídeos/genética , Células Tumorais Cultivadas , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
3.
Mol Ther Methods Clin Dev ; 23: 348-358, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34729381

RESUMO

The application of induced pluripotent stem cells (iPSCs) in advanced therapies is increasing at pace, but concerns remain over their clinical safety profile. We report the first-ever application of doggybone DNA (dbDNA) vectors to generate human iPSCs. dbDNA vectors are closed-capped linear double-stranded DNA gene expression cassettes that contain no bacterial DNA and are amplified by a chemically defined, current good manufacturing practice (cGMP)-compliant methodology. We achieved comparable iPSC reprogramming efficiencies using transiently expressing dbDNA vectors with the same iPSC reprogramming coding sequences as the state-of-the-art OriP/EBNA1 episomal vectors but, crucially, in the absence of p53 shRNA repression. Moreover, persistent expression of EBNA1 from bacterially derived episomes resulted in stimulation of the interferon response, elevated DNA damage, and increased spontaneous differentiation. These cellular activities were diminished or absent in dbDNA-iPSCs, resulting in lines with a greater stability and safety potential for cell therapy.

4.
Mol Ther Methods Clin Dev ; 17: 359-368, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32071928

RESUMO

CD19-specific chimeric antigen receptor (CAR19) T cells, generated using viral vectors, are an efficacious but costly treatment for B cell malignancies. The nonviral piggyBac transposon system provides a simple and inexpensive alternative for CAR19 T cell production. Until now, piggyBac has been plasmid based, facilitating economical vector amplification in bacteria. However, amplified plasmids have several undesirable qualities for clinical translation, including bacterial genetic elements, antibiotic-resistance genes, and the requirement for purification to remove endotoxin. Doggybones (dbDNA) are linear, covalently closed, minimal DNA vectors that can be inexpensively produced enzymatically in vitro at large scale. Importantly, they lack the undesirable features of plasmids. We used dbDNA incorporating piggyBac to generate CAR19 T cells. Initially, expression of functional transposase was evident, but stable CAR expression did not occur. After excluding other causes, additional random DNA flanking the transposon within the dbDNA was introduced, promoting stable CAR expression comparable to that of using plasmid components. Our findings demonstrate that dbDNA incorporating piggyBac can be used to generate CAR T cells and indicate that there is a requirement for DNA flanking the piggyBac transposon to enable effective transposition. dbDNA may further reduce the cost and improve the safety of CAR T cell production with transposon systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa