Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Trends Genet ; 38(11): 1147-1169, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35853769

RESUMO

Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.


Assuntos
Sistemas CRISPR-Cas , Nucleosídeo Desaminases , Sistemas CRISPR-Cas/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Nucleotídeos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo
2.
Plant Physiol ; 191(3): 1818-1835, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36635853

RESUMO

Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. A central regulator of the electron transport chain is ATP synthase, the molecular motor that harnesses the chemiosmotic potential generated from proton-coupled electron transport to synthesize ATP. ATP synthase is regulated both thermodynamically and post-translationally, with proposed phosphorylation sites on multiple subunits. In this study we focused on two N-terminal serines on the catalytic subunit ß in tobacco (Nicotiana tabacum), previously proposed to be important for dark inactivation of the complex to avoid ATP hydrolysis at night. Here we show that there is no clear role for phosphorylation in the dark inactivation of ATP synthase. Instead, mutation of one of the two phosphorylated serine residues to aspartate to mimic constitutive phosphorylation strongly decreased ATP synthase abundance. We propose that the loss of N-terminal phosphorylation of ATPß may be involved in proper ATP synthase accumulation during complex assembly.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons , Fotossíntese , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Fosforilação , Fotossíntese/genética , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo
3.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36227729

RESUMO

RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 188(1): 637-652, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34623449

RESUMO

The high-value carotenoid astaxanthin (3,3'-dihydroxy-ß,ß-carotene-4,4'-dione) is one of the most potent antioxidants in nature. In addition to its large-scale use in fish farming, the pigment has applications as a food supplement and an active ingredient in cosmetics and in pharmaceuticals for the treatment of diseases linked to reactive oxygen species. The biochemical pathway for astaxanthin synthesis has been introduced into seed plants, which do not naturally synthesize this pigment, by nuclear and plastid engineering. The highest accumulation rates have been achieved in transplastomic plants, but massive production of astaxanthin has resulted in severe growth retardation. What limits astaxanthin accumulation levels and what causes the mutant phenotype is unknown. Here, we addressed these questions by making astaxanthin synthesis in tobacco (Nicotiana tabacum) plastids inducible by a synthetic riboswitch. We show that, already in the uninduced state, astaxanthin accumulates to similarly high levels as in transplastomic plants expressing the pathway constitutively. Importantly, the inducible plants displayed wild-type-like growth properties and riboswitch induction resulted in a further increase in astaxanthin accumulation. Our data suggest that the mutant phenotype associated with constitutive astaxanthin synthesis is due to massive metabolite turnover, and indicate that astaxanthin accumulation is limited by the sequestration capacity of the plastid.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Riboswitch/genética , Xantofilas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas
5.
Plant Physiol ; 188(3): 1469-1482, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919714

RESUMO

Annatto (Bixa orellana) is a perennial shrub native to the Americas, and bixin, derived from its seeds, is a methoxylated apocarotenoid used as a food and cosmetic colorant. Two previous reports claimed to have isolated the carotenoid cleavage dioxygenase (CCD) responsible for the production of the putative precursor of bixin, the C24 apocarotenal bixin dialdehyde. We re-assessed the activity of six Bixa CCDs and found that none of them produced substantial amounts of bixin dialdehyde in Escherichia coli. Unexpectedly, BoCCD4-3 cleaved different carotenoids (lycopene, ß-carotene, and zeaxanthin) to yield the C20 apocarotenal crocetin dialdehyde, the known precursor of crocins, which are glycosylated apocarotenoids accumulated in saffron stigmas. BoCCD4-3 lacks a recognizable transit peptide but localized to plastids, the main site of carotenoid accumulation in plant cells. Expression of BoCCD4-3 in Nicotiana benthamiana leaves (transient expression), tobacco (Nicotiana tabacum) leaves (chloroplast transformation, under the control of a synthetic riboswitch), and in conjunction with a saffron crocetin glycosyl transferase, in tomato (Solanum lycopersicum) fruits (nuclear transformation) led to high levels of crocin accumulation, reaching the highest levels (>100 µg/g dry weight) in tomato fruits, which also showed a crocin profile similar to that found in saffron, with highly glycosylated crocins as major compounds. Thus, while the bixin biosynthesis pathway remains unresolved, BoCCD4-3 can be used for the metabolic engineering of crocins in a wide range of different plant tissues.


Assuntos
Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas
6.
Plant Physiol ; 185(3): 1091-1110, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793919

RESUMO

De novo fatty acid biosynthesis in plants relies on a prokaryotic-type acetyl-CoA carboxylase (ACCase) that resides in the plastid compartment. The enzyme is composed of four subunits, one of which is encoded in the plastid genome, whereas the other three subunits are encoded by nuclear genes. The plastid gene (accD) encodes the ß-carboxyltransferase subunit of ACCase and is essential for cell viability. To facilitate the functional analysis of accD, we pursued a transplastomic knockdown strategy in tobacco (Nicotiana tabacum). By introducing point mutations into the translational start codon of accD, we obtained stable transplastomic lines with altered ACCase activity. Replacement of the standard initiator codon AUG with UUG strongly reduced AccD expression, whereas replacement with GUG had no detectable effects. AccD knockdown mutants displayed reduced ACCase activity, which resulted in changes in the levels of many but not all species of cellular lipids. Limiting fatty acid availability caused a wide range of macroscopic, microscopic, and biochemical phenotypes, including impaired chloroplast division, reduced seed set, and altered storage metabolism. Finally, while the mutants displayed reduced growth under photoautotrophic conditions, they showed exaggerated growth under heterotrophic conditions, thus uncovering an unexpected antagonistic role of AccD activity in autotrophic and heterotrophic growth.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Acetil-CoA Carboxilase/genética , Núcleo Celular/metabolismo , Plastídeos/genética , Sementes/metabolismo
7.
Plant Physiol ; 183(1): 263-276, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32071153

RESUMO

The chloroplast glutamyl-tRNA (tRNAGlu) is unique in that it has two entirely different functions. In addition to acting in translation, it serves as the substrate of glutamyl-tRNA reductase (GluTR), the enzyme catalyzing the committed step in the tetrapyrrole biosynthetic pathway. How the tRNAGlu pool is distributed between the two pathways and whether tRNAGlu allocation limits tetrapyrrole biosynthesis and/or protein biosynthesis remains poorly understood. We generated a series of transplastomic tobacco (Nicotiana tabacum) plants to alter tRNAGlu expression levels and introduced a point mutation into the plastid trnE gene, which has been reported to uncouple protein biosynthesis from tetrapyrrole biosynthesis in chloroplasts of the protist Euglena gracilis We show that, rather than comparable uncoupling of the two pathways, the trnE mutation is lethal in tobacco because it inhibits tRNA processing, thus preventing translation of Glu codons. Ectopic expression of the mutated trnE gene uncovered an unexpected inhibition of glutamyl-tRNA reductase by immature tRNAGlu We further demonstrate that whereas overexpression of tRNAGlu does not affect tetrapyrrole biosynthesis, reduction of GluTR activity through inhibition by tRNAGlu precursors causes tetrapyrrole synthesis to become limiting in early plant development when active photosystem biogenesis provokes a high demand for de novo chlorophyll biosynthesis. Taken together, our findings provide insight into the roles of tRNAGlu at the intersection of protein biosynthesis and tetrapyrrole biosynthesis.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tetrapirróis/metabolismo , Aldeído Oxirredutases/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Códon/genética
8.
Nature ; 511(7508): 232-5, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24909992

RESUMO

Allopolyploidization, the combination of the genomes from two different species, has been a major source of evolutionary innovation and a driver of speciation and environmental adaptation. In plants, it has also contributed greatly to crop domestication, as the superior properties of many modern crop plants were conferred by ancient allopolyploidization events. It is generally thought that allopolyploidization occurred through hybridization events between species, accompanied or followed by genome duplication. Although many allopolyploids arose from closely related species (congeners), there are also allopolyploid species that were formed from more distantly related progenitor species belonging to different genera or even different tribes. Here we have examined the possibility that allopolyploidization can also occur by asexual mechanisms. We show that upon grafting--a mechanism of plant-plant interaction that is widespread in nature--entire nuclear genomes can be transferred between plant cells. We provide direct evidence for this process resulting in speciation by creating a new allopolyploid plant species from a herbaceous species and a woody species in the nightshade family. The new species is fertile and produces fertile progeny. Our data highlight natural grafting as a potential asexual mechanism of speciation and also provide a method for the generation of novel allopolyploid crop species.


Assuntos
Transferência Genética Horizontal , Especiação Genética , Genoma de Planta/genética , Nicotiana/genética , Farmacorresistência Bacteriana/genética , Resistência a Canamicina/genética , Cariótipo , Fenótipo , Plantas Geneticamente Modificadas , Reprodução Assexuada , Especificidade da Espécie
9.
Nano Lett ; 19(6): 3634-3640, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31095394

RESUMO

X-ray diffraction is measured on individual bilayer and multilayer graphene single-crystals and combined with electrochemically induced lithium intercalation. In-plane Bragg peaks are observed by grazing incidence diffraction. Focusing the incident beam down to an area of about 10 µm × 10 µm, individual flakes are probed by specular X-ray reflectivity. By deploying a recursive Parratt algorithm to model the experimental data, we gain access to characteristic crystallographic parameters of the samples. Notably, it is possible to directly extract the bi/multilayer graphene c-axis lattice parameter. The latter is found to increase upon lithiation, which we control using an on-chip peripheral electrochemical cell layout. These experiments demonstrate the feasibility of in situ X-ray diffraction on individual, micron-sized single crystallites of few- and bilayer two-dimensional materials.


Assuntos
Grafite/química , Lítio/química , Nanoestruturas/química , Algoritmos , Nanoestruturas/ultraestrutura , Difração de Raios X , Raios X
10.
Plant Physiol ; 176(2): 1485-1508, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229697

RESUMO

The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis.


Assuntos
Endopeptidase Clp/metabolismo , Nicotiana/enzimologia , Proteoma , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Endopeptidase Clp/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteômica , Interferência de RNA , Especificidade por Substrato , Nicotiana/genética
11.
J Exp Bot ; 68(9): 2199-2218, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369470

RESUMO

Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.


Assuntos
Endopeptidase Clp/genética , Metaloendopeptidases/genética , Nicotiana/genética , Endopeptidase Clp/metabolismo , Técnicas de Silenciamento de Genes , Metaloendopeptidases/metabolismo , Mutagênese Sítio-Dirigida , Interferência de RNA , Nicotiana/enzimologia
12.
Nucleic Acids Res ; 43(10): e66, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25824954

RESUMO

Riboswitches are RNA sensors that regulate gene expression in response to binding of small molecules. Although they conceptually represent simple on/off switches and, therefore, hold great promise for biotechnology and future synthetic biology applications, the induction of gene expression by natural riboswitches after ligand addition or removal is often only moderate and, consequently, the achievable expression levels are not very high. Here, we have designed an RNA amplification-based system that strongly improves the efficiency of riboswitches. We have successfully implemented the method in a biological system for which currently no efficient endogenous tools for inducible (trans)gene expression are available: the chloroplasts of higher plants. We further show that an HIV antigen whose constitutive expression from the chloroplast genome is deleterious to the plant can be inducibly expressed under the control of the RNA amplification-enhanced riboswitch (RAmpER) without causing a mutant phenotype, demonstrating the potential of the method for the production of proteins and metabolites that are toxic to the host cell.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Riboswitch , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Genoma de Cloroplastos , Nicotiana/genética , Transgenes , Proteínas Virais/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
13.
J Exp Bot ; 67(8): 2495-506, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969746

RESUMO

Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons.


Assuntos
Vias Biossintéticas , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Sistema Enzimático do Citocromo P-450/metabolismo , Luz , Nicotiana/genética , Nitrilas/metabolismo , Sorghum/enzimologia , Biomassa , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Cloroplastos/ultraestrutura , Cromatografia Líquida , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Genoma de Cloroplastos , Genoma de Planta , Glucosídeos/metabolismo , Espectrometria de Massas , Óperon/genética , Fenótipo , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Subunidades Proteicas/metabolismo , Transformação Genética/efeitos da radiação
14.
J Ind Microbiol Biotechnol ; 43(8): 1059-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27165660

RESUMO

In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese.


Assuntos
Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Leite/química , Rhizomucor/enzimologia , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Biocatálise , Caseínas/química , Queijo , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Temperatura
15.
Proc Natl Acad Sci U S A ; 110(8): E623-32, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382222

RESUMO

The engineering of complex metabolic pathways requires the concerted expression of multiple genes. In plastids (chloroplasts) of plant cells, genes are organized in operons that are coexpressed as polycistronic transcripts and then often are processed further into monocistronic mRNAs. Here we have used the tocochromanol pathway (providing tocopherols and tocotrienols, collectively also referred to as "vitamin E") as an example to establish principles of successful multigene engineering by stable transformation of the chloroplast genome, a technology not afflicted with epigenetic variation and/or instability of transgene expression. Testing a series of single-gene constructs (encoding homogentisate phytyltransferase, tocopherol cyclase, and γ-tocopherol methyltransferase) and rationally designed synthetic operons in tobacco and tomato plants, we (i) confirmed previous results suggesting homogentisate phytyltransferase as the limiting enzymatic step in the pathway, (ii) comparatively characterized the bottlenecks in tocopherol biosynthesis in transplastomic leaves and tomato fruits, and (iii) achieved an up to tenfold increase in total tocochromanol accumulation. In addition, our results uncovered an unexpected light-dependent regulatory link between tocochromanol metabolism and the pathways of photosynthetic pigment biosynthesis. The synthetic operon design developed here will facilitate future synthetic biology applications in plastids, especially the design of artificial operons that introduce novel biochemical pathways into plants.


Assuntos
Genes de Plantas , Nicotiana/genética , Óperon , Plantas Geneticamente Modificadas/genética , Plastídeos , Solanum lycopersicum/genética , Dados de Sequência Molecular , Tocoferóis/metabolismo
16.
Plant Physiol ; 166(4): 1985-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315605

RESUMO

In all organisms, transfer RNAs (tRNAs) contain numerous modified nucleotides. For many base modifications in tRNAs, the functional significance is not well understood, and the enzymes performing the modification reactions are unknown. Here, we have studied members of a family of putative nucleotide deaminases in the model plant Arabidopsis (Arabidopsis thaliana). We show that two Arabidopsis genes encoding homologs of yeast (Saccharomyces cerevisiae) tRNA adenosine deaminases catalyze adenosine-to-inosine editing in position 34 of several cytosolic tRNA species. The encoded proteins (AtTAD2 and AtTAD3, for tRNA-specific adenosine deaminase) localize to the nucleus and interact with each other in planta in bimolecular fluorescence complementation and coimmunoprecipitation assays. Both AtTAD2 and AtTAD3 are encoded by essential genes whose knockout is lethal and leads to arrested embryo development at the globular stage. Knockdown mutants for AtTAD2 and AtTAD3 display reduced growth and inefficient editing from adenosine to inosine in six nucleus-encoded tRNA species. Moreover, upon comparison of DNA and complementary DNA sequences, we discovered cytidine-to-uridine RNA editing in position 32 of two nucleus-encoded serine tRNAs, tRNA-serine(AGA) and tRNA-serine(GCT). This adds a unique type of RNA editing to the modifications occurring in nuclear genome-encoded RNAs in plants.


Assuntos
Adenosina Desaminase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Edição de RNA/genética , Adenosina/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Citidina/genética , Citosol , Genes Essenciais/genética , Genes Reporter , Inosina/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , RNA de Plantas/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Uridina/genética
17.
Nucleic Acids Res ; 41(5): 3362-72, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355609

RESUMO

In all organisms, transfer RNAs (tRNAs) undergo extensive post-transcriptional modifications. Although base modifications in the anticodon are known to alter decoding specificity or improve decoding accuracy, much less is known about the functional relevance of modifications in other positions of tRNAs. Here, we report the identification of an A-to-I tRNA editing enzyme that modifies the tRNA-Ala(AGC) in the model plant Arabidopsis thaliana. The enzyme is homologous to Tad1p, a yeast tRNA-specific adenosine deaminase, and it selectively deaminates the adenosine in the position 3'-adjacent to the anticodon (A37) to inosine. We show that the AtTAD1 protein is exclusively localized in the nucleus. The tad1 loss-of-function mutants isolated in Arabidopsis show normal accumulation of the tRNA-Ala(AGC), suggesting that the loss of the I37 modification does not affect tRNA stability. The tad1 knockout mutants display no discernible phenotype under standard growth conditions, but produce less biomass under environmental stress conditions. Our results provide the first evidence in support of a physiological relevance of the A37-to-I modification in eukaryotes.


Assuntos
Adenosina Desaminase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Resposta ao Choque Frio , Edição de RNA , RNA de Transferência de Alanina/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Núcleo Celular/metabolismo , Inosina/metabolismo , Mitocôndrias , Mutagênese Insercional , Conformação de Ácido Nucleico , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Transporte Proteico , Estabilidade de RNA
18.
Nucleic Acids Res ; 39(12): 5181-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21357608

RESUMO

Group II introns are found in bacteria and cell organelles (plastids, mitochondria) and are thought to represent the evolutionary ancestors of spliceosomal introns. It is generally believed that group II introns are selfish genetic elements that do not have any function. Here, we have scrutinized this assumption by analyzing two group II introns that interrupt a plastid gene (ycf3) involved in photosystem assembly. Using stable transformation of the plastid genome, we have generated mutant plants that lack either intron 1 or intron 2 or both. Interestingly, the deletion of intron 1 caused a strong mutant phenotype. We show that the mutants are deficient in photosystem I and that this deficiency is directly related to impaired ycf3 function. We further show that, upon deletion of intron 1, the splicing of intron 2 is strongly inhibited. Our data demonstrate that (i) the loss of a group II intron is not necessarily phenotypically neutral and (ii) the splicing of one intron can depend on the presence of another.


Assuntos
Cloroplastos/genética , Genes de Plantas , Íntrons , Mutação , Temperatura Baixa , Modelos Químicos , Fenótipo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Splicing de RNA , Deleção de Sequência , Estresse Fisiológico , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(14): 6204-9, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308585

RESUMO

Riboswitches are natural RNA sensors that regulate gene expression in response to ligand binding. Riboswitches have been identified in prokaryotes and eukaryotes but are unknown in organelles (mitochondria and plastids). Here we have tested the possibility to engineer riboswitches for plastids (chloroplasts), a genetic system that largely relies on translational control of gene expression. To this end, we have used bacterial riboswitches and modified them in silico to meet the requirements of translational regulation in plastids. These engineered switches were then tested for functionality in vivo by stable transformation of the tobacco chloroplast genome. We report the identification of a synthetic riboswitch that functions as an efficient translational regulator of gene expression in plastids in response to its exogenously applied ligand theophylline. This riboswitch provides a novel tool for plastid genome engineering that facilitates the tightly regulated inducible expression of chloroplast genes and transgenes and thus has wide applications in functional genomics and biotechnology.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Regulação da Expressão Gênica , Genomas de Plastídeos , Biossíntese de Proteínas , Sequência de Bases , DNA Bacteriano/química , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nicotiana/genética , Nicotiana/metabolismo
20.
Nat Commun ; 13(1): 5856, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195597

RESUMO

Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Proteínas de Transporte , Plantas , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa