Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38326277

RESUMO

Cardiac tolerance to ischaemia can be increased by dietary interventions such as fasting, which is associated with significant changes in myocardial gene expression. Among the possible mechanisms of how gene expression may be altered are epigenetic modifications of RNA - epitranscriptomics. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two of the most prevalent modifications in mRNA. These methylations are reversible and regulated by proteins called writers, erasers, readers, and m6A-repelled proteins. We analysed 33 of these epitranscriptomic regulators in rat hearts after cardioprotective 3-day fasting using RT-qPCR, Western blot, and targeted proteomic analysis. We found that the most of these regulators were changed on mRNA or protein levels in fasting hearts, including up-regulation of both demethylases - FTO and ALKBH5. In accordance, decreased methylation (m6A+m6Am) levels were detected in cardiac total RNA after fasting. We also identified altered methylation levels in Nox4 and Hdac1 transcripts, both of which play a role in the cytoprotective action of ketone bodies produced during fasting. Furthermore, we investigated the impact of inhibiting demethylases ALKBH5 and FTO in adult rat primary cardiomyocytes (AVCMs). Our findings indicate that inhibiting these demethylases reduced the hypoxic tolerance of AVCMs isolated from fasting rats. This study showed that the complex epitranscriptomic machinery around m6A and m6Am modifications is regulated in the fasting hearts and might play an important role in cardiac adaptation to fasting, a well-known cardioprotective intervention.


Assuntos
Adenosina , Proteômica , Animais , Ratos , Adenosina/genética , Adenosina/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Jejum
2.
Molecules ; 27(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558174

RESUMO

The modern development of computer technology and different in silico methods have had an increasing impact on the discovery and development of new drugs. Different molecular docking techniques most widely used in silico methods in drug discovery. Currently, the time and financial costs for the initial hit identification can be significantly reduced due to the ability to perform high-throughput virtual screening of large compound libraries in a short time. However, the selection of potential hit compounds still remains more of a random process, because there is still no consensus on what the binding energy and ligand efficiency (LE) of a potentially active compound should be. In the best cases, only 20-30% of compounds identified by molecular docking are active in biological tests. In this work, we evaluated the impact of the docking software used as well as the type of the target protein on the molecular docking results and their accuracy using an example of the three most popular programs and five target proteins related to neurodegenerative diseases. In addition, we attempted to determine the "reliable range" of the binding energy and LE that would allow selecting compounds with biological activity in the desired concentration range.


Assuntos
Proteínas , Software , Simulação de Acoplamento Molecular , Proteínas/química , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Ligantes , Ligação Proteica
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926120

RESUMO

The fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A) demethylase, is an important regulator of central nervous system development, neuronal signaling and disease. We present here the target-tailored development and biological characterization of small-molecule inhibitors of FTO. The active compounds were identified using high-throughput molecular docking and molecular dynamics screening of the ZINC compound library. In FTO binding and activity-inhibition assays the two best inhibitors demonstrated Kd = 185 nM; IC50 = 1.46 µM (compound 2) and Kd = 337 nM; IC50 = 28.9 µM (compound 3). Importantly, the treatment of mouse midbrain dopaminergic neurons with the compounds promoted cellular survival and rescued them from growth factor deprivation induced apoptosis already at nanomolar concentrations. Moreover, both the best inhibitors demonstrated good blood-brain-barrier penetration in the model system, 31.7% and 30.8%, respectively. The FTO inhibitors demonstrated increased potency as compared to our recently developed ALKBH5 m6A demethylase inhibitors in protecting dopamine neurons. Inhibition of m6A RNA demethylation by small-molecule drugs, as presented here, has therapeutic potential and provides tools for the identification of disease-modifying m6A RNAs in neurogenesis and neuroregeneration. Further refinement of the lead compounds identified in this study can also lead to unprecedented breakthroughs in the treatment of neurodegenerative diseases.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neurônios Dopaminérgicos/metabolismo , Metiltransferases/metabolismo , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Animais não Endogâmicos , Apoptose , Desmetilação , Neurônios Dopaminérgicos/fisiologia , Desenho de Fármacos , Metiltransferases/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Cultura Primária de Células , RNA/metabolismo
4.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205699

RESUMO

Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.


Assuntos
Epigênese Genética , Epigenômica/métodos , Isquemia Miocárdica/metabolismo , RNA/metabolismo , Transcriptoma , Biomarcadores , Estudos de Casos e Controles , Humanos , Projetos de Pesquisa
5.
Mol Pain ; 16: 1744806920950866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32811276

RESUMO

The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.


Assuntos
Biomimética/métodos , Neuralgia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ret/agonistas , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nervos Espinhais/efeitos dos fármacos , Animais , Escala de Avaliação Comportamental , Linhagem Celular , Neuropatias Diabéticas/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores Neurotróficos Derivados de Linhagem de Célula Glial , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Fosforilação , Ratos , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Nervos Espinhais/lesões
6.
Mov Disord ; 35(2): 245-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840869

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Substância Negra/efeitos dos fármacos
7.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316402

RESUMO

Alzheimer's disease is a neurodegenerative condition for which currently there are no drugs that can cure its devastating impact on human brain function. Although there are therapeutics that are being used in contemporary medicine for treatment against Alzheimer's disease, new and more effective drugs are in great demand. In this work, we proposed three potential drug candidates which may act as multifunctional compounds simultaneously toward AChE, SERT, BACE1 and GSK3ß protein targets. These candidates were discovered by using state-of-the-art methods as molecular calculations (molecular docking and molecular dynamics), artificial neural networks and multilinear regression models. These methods were used for virtual screening of the publicly available library containing more than twenty thousand compounds. The experimental testing enabled us to confirm a multitarget drug candidate active at low micromolar concentrations against two targets, e.g., AChE and BACE1.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Glicogênio Sintase Quinase 3 beta/química , Relação Quantitativa Estrutura-Atividade , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Sítios de Ligação , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Fluxo de Trabalho
8.
Molecules ; 23(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044400

RESUMO

The aim of this study was to identify new potentially active compounds for three protein targets, tropomyosin receptor kinase A (TrkA), N-methyl-d-aspartate (NMDA) receptor, and leucine-rich repeat kinase 2 (LRRK2), that are related to various neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuropathic pain. We used a combination of machine learning methods including artificial neural networks and advanced multilinear techniques to develop quantitative structure⁻activity relationship (QSAR) models for all target proteins. The models were applied to screen more than 13,000 natural compounds from a public database to identify active molecules. The best candidate compounds were further confirmed by docking analysis and molecular dynamics simulations using the crystal structures of the proteins. Several compounds with novel scaffolds were predicted that could be used as the basis for development of novel drug inhibitors related to each target.


Assuntos
Produtos Biológicos/química , Simulação por Computador , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Produtos Biológicos/farmacologia , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Modelos Moleculares , Redes Neurais de Computação , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor trkA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Antimicrob Agents Chemother ; 60(12): 7382-7395, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736770

RESUMO

Chikungunya virus (CHIKV; genus Alphavirus) is the causative agent of chikungunya fever. CHIKV replication can be inhibited by some broad-spectrum antiviral compounds; in contrast, there is very little information about compounds specifically inhibiting the enzymatic activities of CHIKV replication proteins. These proteins are translated in the form of a nonstructural (ns) P1234 polyprotein precursor from the CHIKV positive-strand RNA genome. Active forms of replicase enzymes are generated using the autoproteolytic activity of nsP2. The available three-dimensional (3D) structure of nsP2 protease has made it a target for in silico drug design; however, there is thus far little evidence that the designed compounds indeed inhibit the protease activity of nsP2 and/or suppress CHIKV replication. In this study, a set of 12 compounds, predicted to interact with the active center of nsP2 protease, was designed using target-based modeling. The majority of these compounds were shown to inhibit the ability of nsP2 to process recombinant protein and synthetic peptide substrates. Furthermore, all compounds found to be active in these cell-free assays also suppressed CHIKV replication in cell culture, the 50% effective concentration (EC50) of the most potent inhibitor being ∼1.5 µM. Analysis of stereoisomers of one compound revealed that inhibition of both the nsP2 protease activity and CHIKV replication depended on the conformation of the inhibitor. Combining the data obtained from different assays also indicates that some of the analyzed compounds may suppress CHIKV replication using more than one mechanism.


Assuntos
Antivirais/síntese química , Vírus Chikungunya/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Genoma Viral , Poliproteínas/antagonistas & inibidores , Inibidores de Proteases/síntese química , RNA Helicases/antagonistas & inibidores , Animais , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Domínio Catalítico , Linhagem Celular , Vírus Chikungunya/enzimologia , Vírus Chikungunya/genética , Vírus Chikungunya/crescimento & desenvolvimento , Cricetinae , Cristalografia por Raios X , Ciclopropanos/síntese química , Ciclopropanos/farmacologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , Inibidores de Proteases/farmacologia , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
10.
Org Biomol Chem ; 12(30): 5634-44, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24962358

RESUMO

A general and efficient approach was developed for the introduction of S-functionality at the C-5 position of cytosine and uracil nucleosides and their analogues. The key step is a palladium-catalyzed C-S coupling of the corresponding 5-bromo nucleoside derivative and alkyl thiol. The butyl 3-mercaptopropionate coupling products were further converted to the corresponding disulphides, the stable precursors of 5-mercaptopyrimidine nucleosides.


Assuntos
Química Orgânica/métodos , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/síntese química , Citosina/síntese química , Citosina/química , Dissulfetos/síntese química , Dissulfetos/química , Lamivudina/análogos & derivados , Lamivudina/química , Tiouracila/síntese química , Tiouracila/química
11.
Trends Pharmacol Sci ; 44(6): 335-353, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069041

RESUMO

Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.


Assuntos
Regulação da Expressão Gênica , RNA , Humanos , RNA/química , RNA/metabolismo , Proteínas/metabolismo
12.
Cell Rep ; 42(2): 112066, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36739529

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic ß cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios Dopaminérgicos/metabolismo
13.
J Phys Chem A ; 115(15): 3475-9, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21449551

RESUMO

CODESSA Pro derivative descriptors were calculated for a data set of 426 azeotropic mixtures by the centroid approximation and the weighted-contribution-factor approximation. The two approximations produced almost identical four-descriptor QSPR models relating the structural characteristic of the individual components of azeotropes to the azeotropic boiling points. These models were supported by internal and external validations. The descriptors contributing to the QSPR models are directly related to the three components of the enthalpy (heat) of vaporization.


Assuntos
Temperatura de Transição , Destilação , Teoria Quântica , Volatilização
14.
ACS Omega ; 6(20): 13310-13320, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056479

RESUMO

The RNA 6-N-methyladenosine (m6A) demethylase ALKBH5 has been shown to be oncogenic in several cancer types, including leukemia and glioblastoma. We present here the target-tailored development and first evaluation of the antiproliferative effects of new ALKBH5 inhibitors. Two compounds, 2-[(1-hydroxy-2-oxo-2-phenylethyl)sulfanyl]acetic acid (3) and 4-{[(furan-2-yl)methyl]amino}-1,2-diazinane-3,6-dione (6), with IC50 values of 0.84 µM and 1.79 µM, respectively, were identified in high-throughput virtual screening of the library of 144 000 preselected compounds and subsequent verification of hits in an m6A antibody-based enzyme-linked immunosorbent assay (ELISA) enzyme inhibition assay. The effect of these compounds on the proliferation of selected target cancer cell lines was then measured. In the case of three leukemia cell lines (HL-60, CCRF-CEM, and K562) the cell proliferation was suppressed at low micromolar concentrations of inhibitors, with IC50 ranging from 1.38 to 16.5 µM. However, the effect was low or negligible in the case of another leukemia cell line, Jurkat, and the glioblastoma cell line A-172. These results demonstrate the potential of ALKBH5 inhibition as a cancer-cell-type-selective antiproliferative strategy.

15.
ACS Omega ; 6(24): 15957-15963, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179640

RESUMO

The N6-methyladenosine (m6A) modifications in both viral and host cell RNAs play an important role in HIV-1 virus genome transcription and virus replication. We demonstrate here that activators of the METTL3/METTL14/WTAP RNA methyltransferase complex enhance the production of virus particles in cells harboring HIV-1 provirus. In parallel, the amount of m6A residues in the host cell mRNA was increased in the presence of these activator compounds. Importantly, the m6A methylation of the HIV-1 RNA was also enhanced significantly (about 18%). The increase of virus replication by the small-molecule activators of the METTL3/METTL14/WTAP complex excludes them as potential anti-HIV-1 drug candidates. However, the compounds may be of large interest as activators for the latent HIV-1 provirus copies deposited in host cells' genome and the subsequent virus eradication by an antiviral compound.

16.
ACS Omega ; 6(8): 5786-5794, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681617

RESUMO

Chikungunya fever results from an infection with Chikungunya virus (CHIKV, genus Alphavirus) that is prevalent in tropical regions and is spreading fast to temperate climates with documented outbreaks in Europe and the Americas. Currently, there are no available vaccines or antiviral drugs for prevention or treatment of Chikungunya fever. The nonstructural proteins (nsPs) of CHIKV responsible for virus replication are promising targets for the development of new antivirals. This study was attempted to find out new potential inhibitors of CHIKV nsP2 protease using the ligand-based drug design. Two compounds 10 and 10c, identified by molecular docking, showed antiviral activity against CHIKV with IC50 of 13.1 and 8.3 µM, respectively. Both compounds demonstrated the ability to inhibit the activity of nsP2 in a cell-free assay, and the impact of compound 10 on virus replication was confirmed by western blot. The molecular dynamics study of the interactions of compounds 10 and 10c with CHIKV nsP2 showed that a possible mechanism of action of these compounds is the blocking of the active site and the catalytic dyad of nsP2.

17.
ACS Omega ; 6(16): 10884-10896, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056242

RESUMO

The Chikungunya virus (CHIKV) is an arbovirus belonging to the genus Alphavirus of the Togaviridae family. CHIKV is transmitted by the mosquitoes and causes Chikungunya fever. CHIKV outbreaks have occurred in Africa, Asia, Europe, and the countries of Indian and Pacific Oceans. In 2013, CHIKV cases were registered for the first time in the Americas on the Caribbean islands. There is currently no vaccine to prevent or medicines to treat CHIKV infection. The CHIKV nonstructural protease (nsP2) is a promising potential target for the development of drugs against CHIKV infection because this protein is one of the key components of the viral replication complex and is involved in multiple steps of virus infection. In this work, novel analogues of the potential CHIKV nsP2 protease inhibitor, first reported by Das et al. in 2016, were identified using molecular modeling methods, synthesized, and evaluated in vitro. The optimization of the structure of the inhibitor allowed to increase the antiviral activity of the compound 2-10 times. The possible mechanism of action of the identified potential inhibitors of the CHIKV nsP2 protease was studied in detail using molecular dynamics (MD) simulations. According to the MD results, the most probable mechanism of action is the blocking of conformational changes in the nsP2 protease required for substrate recognition and binding.

18.
J Parkinsons Dis ; 11(3): 1023-1046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024778

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-ret , Ratos , Substância Negra/metabolismo
19.
J Phys Chem A ; 114(7): 2684-8, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20112909

RESUMO

The photolysis half-lives of 70 polychlorinated dibenzo-p-dioxins and dibenzofurans are correlated with their molecular structures by a QSPR model (R(2) = 0.72) comprising three bond-energy-related descriptors. The photodegradation depends on the stability of the aromatic system and the C-O and C-C bond strengths. Model validation utilized leave-one-out (R(2) = 0.69), leave-many-out (R(2) = 0.72), and scrambling (R(2) = 0.19) procedures. Our results allow estimation of the photolysis half-lives of the remaining possible 140 PCDDs and PCDFs congeners.


Assuntos
Benzofuranos/química , Dibenzodioxinas Policloradas/análogos & derivados , Simulação por Computador , Estrutura Molecular , Fotólise , Dibenzodioxinas Policloradas/química
20.
J Toxicol Environ Health A ; 72(19): 1181-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20077186

RESUMO

The experimental EC(50) toxicities toward Daphnia magna for a series of 130 benzoic acids, benzaldehydes, phenylsulfonyl acetates, cycloalkane-carboxylates, benzanilides, and other esters were studied using the Best multilinear regression algorithm (BMLR) implemented in CODESSA. A modified quantitative structure-activity relationships (QSAR) procedure was applied guaranteeing the stability and reproducibility of the results. Separating the initial data set into training and test subsets generated three independent models with an average R(2) of .735. A five-descriptor general model including all 130 compounds, constructed using the descriptors found effective for the independent subsets, was characterized by the following statistical parameters: R(2) = .712; R(2)(cv) = .676; F = 61.331; s(2) = 0.6. The removal of two extreme outliers improved significantly the statistical parameters: R(2) = .759; R(2)(cv) = .728; F = 77.032; s(2) = 0.499. The sensitivity of the general model to chance correlations was estimated by applying a scrambling procedure involving 20 randomizations of the original property values. The resulting R(2) = .192 demonstrated the high robustness of the model proposed. The descriptors appearing in the obtained models are related to the biochemical nature of the adverse effects. An additional study of the EC(50)/LC(50) relationship for a series of 28 compounds (part of our general data set) revealed that these endpoints correlated with R(2) = .98.


Assuntos
Daphnia/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Modelos Lineares , Estrutura Molecular , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa