Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 38(6): 1223-35, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23791642

RESUMO

RORγt⁺ innate lymphoid cells (ILCs) are crucial players of innate immune responses and represent a major source of interleukin-22 (IL-22), which has an important role in mucosal homeostasis. The signals required by RORγt⁺ ILCs to express IL-22 and other cytokines have been elucidated only partially. Here we showed that RORγt⁺ ILCs can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORγt⁺ ILCs selectively activated a coordinated proinflammatory program, including tumor necrosis factor (TNF), whereas cytokine stimulation preferentially induced IL-22 expression. However, combined engagement of NKp44 and cytokine receptors resulted in a strong synergistic effect. These data support the concept that NKp44⁺ RORγt⁺ ILCs can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.


Assuntos
Interleucinas/metabolismo , Linfócitos/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Células Cultivadas , Microambiente Celular , Homeostase , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Mucosa/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Receptor Cross-Talk , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina 22
2.
PLoS Pathog ; 15(3): e1007601, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883607

RESUMO

Influenza viruses (IVs) tend to rapidly develop resistance to virus-directed vaccines and common antivirals targeting pathogen determinants, but novel host-directed approaches might preclude resistance development. To identify the most promising cellular targets for a host-directed approach against influenza, we performed a comparative small interfering RNA (siRNA) loss-of-function screen of IV replication in A549 cells. Analysis of four different IV strains including a highly pathogenic avian H5N1 strain, an influenza B virus (IBV) and two human influenza A viruses (IAVs) revealed 133 genes required by all four IV strains. According to gene enrichment analyses, these strain-independent host genes were particularly enriched for nucleocytoplasmic trafficking. In addition, 360 strain-specific genes were identified with distinct patterns of usage for IAVs versus IBV and human versus avian IVs. The strain-independent host genes served to define 43 experimental and otherwise clinically approved drugs, targeting reportedly fourteen of the encoded host factors. Amongst the approved drugs, the urea-based kinase inhibitors (UBKIs) regorafenib and sorafenib exhibited a superior therapeutic window of high IV antiviral activity and low cytotoxicity. Both UBKIs appeared to block a cell signaling pathway involved in IV replication after internalization, yet prior to vRNP uncoating. Interestingly, both compounds were active also against unrelated viruses including cowpox virus (CPXV), hantavirus (HTV), herpes simplex virus 1 (HSV1) and vesicular stomatitis virus (VSV) and showed antiviral efficacy in human primary respiratory cells. An in vitro resistance development analysis for regorafenib failed to detect IV resistance development against this drug. Taken together, the otherwise clinically approved UBKIs regorafenib and sorafenib possess high and broad-spectrum antiviral activity along with substantial robustness against resistance development and thus constitute attractive host-directed drug candidates against a range of viral infections including influenza.


Assuntos
Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Replicação Viral/fisiologia , Células A549 , Transporte Ativo do Núcleo Celular/fisiologia , Antivirais , Interações Hospedeiro-Patógeno , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Influenza Humana , Orthomyxoviridae/patogenicidade , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Piridinas/farmacologia , Interferência de RNA/imunologia , Vírus de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Sorafenibe/farmacologia , Ureia/metabolismo
3.
Protein Expr Purif ; 176: 105742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866611

RESUMO

Cdc-like kinase 1 (CLK1) is a dual-specificity kinase capable of autophosphorylation on tyrosine residues and Ser/Thr phosphorylation of its substrates. CLK1 belongs to the CLK kinase family that regulates alternative splicing through phosphorylation of serine-arginine rich (SR) proteins. Recent studies have demonstrated that CLK1 has an important role in the replication of influenza A and chikungunya viruses. Furthermore, CLK1 was found to be relevant for the replication of HIV-1 and the West Nile virus, making CLK1 an interesting cellular candidate for the development of a host-directed antiviral therapy that might be efficient for treatment of newly emerging viruses. We describe here our attempts and detailed procedures to obtain the recombinant kinase domain of CLK1 in suitable amounts for crystallization in complex with specific inhibitors. The key solution for the reproducibility of crystals resides in devising and refining expression and purification protocols leading to homogeneous protein. Co-expression of CLK1 with λ-phosphatase and careful purification has yielded crystals of CLK1 complexed with the KH-CB19 inhibitor that diffracted to 1.65 Å. These results paved the path to the screening of more structures of CLK1 complexed compounds, leading to further optimization of their inhibitory activity. Moreover, since kinases are desired targets in numerous pathologies, the approach we report here, the co-expression of kinases with λ-phosphatase, previously used in other kinases, can be adopted as a general protocol in numerous kinase targets for obtaining reproducible and homogenic non-phosphorylated (inactive) forms suitable for biochemical and structural studies thus facilitating the development of novel inhibitors.


Assuntos
Expressão Gênica , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Antivirais/uso terapêutico , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Humanos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Viroses/tratamento farmacológico , Viroses/enzimologia , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus/metabolismo
4.
PLoS Comput Biol ; 15(4): e1006944, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30973879

RESUMO

The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus da Influenza A/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Células A549 , Transporte Ativo do Núcleo Celular , Animais , Biologia Computacional , Simulação por Computador , Cães , Engenharia Genética , Genoma Viral , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/biossíntese , Cinética , Células Madin Darby de Rim Canino , Replicação Viral/genética
5.
Mol Cell Proteomics ; 16(5): 728-742, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289176

RESUMO

Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Proteômica/métodos , Células A549 , Análise por Conglomerados , Endocitose , Células Epiteliais/patologia , Células HEK293 , Humanos , Marcação por Isótopo , Pulmão/patologia , Espectrometria de Massas , Proteínas Serina-Treonina Quinases , Proteoma/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases , Replicação Viral
6.
Nature ; 463(7282): 818-22, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20081832

RESUMO

Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.


Assuntos
Fatores Biológicos , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Influenza Humana/genética , Influenza Humana/virologia , Interferência de RNA , Replicação Viral/fisiologia , Animais , Fatores Biológicos/genética , Fatores Biológicos/metabolismo , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Epiteliais/virologia , Genoma Humano/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética
7.
Mol Microbiol ; 94(1): 186-201, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25116793

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for a high burden of human disease. Here, a loss-of-function screen using a set of lentivirally transduced shRNAs identified 14 human host cell factors that modulate C. trachomatis infectivity. Notably, knockdown of dynamin, a host GTPase, decreased C. trachomatis infectivity. Dynamin functions in multiple cytoplasmic locations, including vesicle formation at the plasma membrane and the trans-Golgi network. However, its role in C. trachomatis infection remains unclear. Here we report that dynamin is essential for homotypic fusion of C. trachomatis inclusions but not for C. trachomatis internalization into the host cell. Further, dynamin activity is necessary for lipid transport into C. trachomatis inclusions and for normal re-differentiation from reticulate to elementary bodies. Fragmentation of the Golgi apparatus is proposed to be an important strategy used by C. trachomatis for efficient lipid acquisition and replication within the host. Here we show that a subset of C. trachomatis-infected cells displayed Golgi fragmentation, which was concurrent with increased mitotic accumulation. Golgi fragmentation was dispensable for dynamin-mediated lipid acquisition into C. trachomatis inclusions, irrespective of the cell cycle phase. Thus, our study reveals a critical role of dynamin in host-derived lipid acquisition for C. trachomatis development.


Assuntos
Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Dinamina I/metabolismo , Dinaminas/metabolismo , Metabolismo dos Lipídeos , Infecções por Chlamydia/genética , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Dinamina I/genética , Dinamina II , Dinaminas/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos
8.
Nature ; 457(7230): 731-5, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19060882

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to obtain nutrients. Like many other intracellular pathogens, C. trachomatis has a marked requirement for host cell lipids, such as sphingolipids and cholesterol, produced in the endoplasmic reticulum and the Golgi apparatus. However, the mechanisms by which intracellular pathogens acquire host cell lipids are not well understood. In particular, no host cell protein responsible for transporting Golgi-derived lipids to the chlamydial inclusions has yet been identified. Here we show that Chlamydia infection in human epithelial cells induces Golgi fragmentation to generate Golgi ministacks surrounding the bacterial inclusion. Ministack formation is triggered by the proteolytic cleavage of the Golgi matrix protein golgin-84. Inhibition of golgin-84 truncation prevents Golgi fragmentation, causing a block in lipid acquisition and maturation of C. trachomatis. Golgi fragmentation by means of RNA-interference-mediated knockdown of distinct Golgi matrix proteins before infection enhances bacterial maturation. Our data functionally connect bacteria-induced golgin-84 cleavage, Golgi ministack formation, lipid acquisition and intracellular pathogen growth. We show that C. trachomatis subverts the structure and function of an entire host cell organelle for its own advantage.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/patogenicidade , Complexo de Golgi/microbiologia , Complexo de Golgi/patologia , Chlamydia muridarum/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas de Transporte Vesicular
9.
RNA Biol ; 11(1): 66-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24440876

RESUMO

A growing body of evidence suggests the non-protein coding human genome is of vital importance for human cell function. Besides small RNAs, the diverse class of long non-coding RNAs (lncRNAs) recently came into focus. However, their relevance for infection, a major evolutionary driving force, remains elusive. Using two commercially available microarray systems, namely NCode™ and Sureprint™ G3, we identified differential expression of 42 ncRNAs during influenza A virus (IAV) infection in human lung epithelial cells. This included several classes of lncRNAs, including large intergenic ncRNAs (lincRNAs). As analyzed by qRT-PCR, expression of one lincRNA, which we termed virus inducible lincRNA (VIN), is induced by several IAV strains (H1N1, H3N2, H7N7) as well as vesicular stomatitis virus. However, we did not observe an induction of VIN by influenza B virus, treatment with RNA mimics, or IFNß. Thus, VIN expression seems to be a specific response to certain viral infections. RNA fractionation and RNA-FISH experiments revealed that VIN is localized to the host cell nucleus. Most importantly, we show that abolition of VIN by RNA interference restricts IAV replication and viral protein synthesis, highlighting the relevance of this lincRNA for productive IAV infection. Our observations suggest that viral pathogens interfere with the non-coding portion of the human genome, thereby guaranteeing their successful propagation, and that the expression of VIN correlates with their virulence. Consequently, our study provides a novel approach for understanding virus pathogenesis in greater detail, which will enable future design of new antiviral strategies targeting the host's non-protein coding genome.


Assuntos
Vírus da Influenza A/fisiologia , Rim/virologia , Pulmão/virologia , RNA Longo não Codificante/genética , Vírus da Estomatite Vesicular Indiana/fisiologia , Animais , Linhagem Celular , Núcleo Celular/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A/classificação , Células Madin Darby de Rim Canino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/farmacologia , Proteínas Virais/metabolismo , Replicação Viral
10.
Front Immunol ; 15: 1338492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380318

RESUMO

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.


Assuntos
Vacinas Sintéticas , Vaccinia virus , Ratos , Animais , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Transgenes
11.
Viruses ; 15(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515193

RESUMO

Influenza A viruses (IAVs) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycans on host cells. HA's receptor specificity towards individual glycans is well studied and clearly critical for virus infection, but the contribution of the highly heterogeneous and complex glycocalyx to virus-cell adhesion remains elusive. Here, we use two complementary methods, glycan arrays and single-virus force spectroscopy (SVFS), to compare influenza virus receptor specificity with virus binding to live cells. Unexpectedly, we found that HA's receptor binding preference does not necessarily reflect virus-cell specificity. We propose SVFS as a tool to elucidate the cell binding preference of IAVs, thereby including the complex environment of sialylated receptors within the plasma membrane of living cells.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Polissacarídeos/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química
12.
PLoS Pathog ; 5(10): e1000615, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816566

RESUMO

Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development.


Assuntos
Chlamydia trachomatis/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Cegueira/epidemiologia , Cegueira/microbiologia , Divisão Celular , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/transmissão , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Retículo Endoplasmático/microbiologia , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Incidência , Infertilidade Feminina/microbiologia , Interferência de RNA , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/transmissão , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética
13.
Pharm Res ; 27(12): 2520-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20824309

RESUMO

PURPOSE: This work describes the production and application of an aerosolised formulation of chitosan nanoparticles for improved pulmonary siRNA delivery and gene silencing in mice. METHODS: Aerosolised chitosan/siRNA nanoparticles were pneumatically formed using a nebulising catheter and sized by laser diffraction. In vitro silencing of aerosolised and non-aerosolised formulations was evaluated in an EGFP endogenous-expressing H1299 cell line by flow cytometry. Non-invasive intratracheal insertion of the catheter was used to study nanoparticle deposition by histological detection of Cy3-labeled siRNA and gene silencing in transgenic EGFP mouse lungs using a flow cytometric method. RESULTS: Flow cytometric analysis demonstrated minimal alteration in gene silencing efficiency before (68%) and after (62%) aerosolisation in EGFP-expressing H1299 cells. Intratracheal catheter administration in mice resulted in nanoparticle deposition throughout the entire lung in both alveoli and bronchiolar regions using low amounts of siRNA. Transgenic EGFP mice dosed with the aerosolised nanoparticle formulation showed significant EGFP gene silencing (68% reduction compared to mismatch group). CONCLUSIONS: This work provides a technology platform for effective pulmonary delivery and gene silencing of RNAi therapeutics with potential use in preclinical studies of respiratory disease treatment.


Assuntos
Quitosana , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Aerossóis , Animais , Sequência de Bases , Linhagem Celular , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA
14.
Vaccine ; 37(47): 7019-7028, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31005427

RESUMO

Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/virologia , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Cultura de Vírus/métodos , Animais , Contagem de Células/métodos , Linhagem Celular , Cães , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Suínos , Vírion/imunologia
15.
Antiviral Res ; 168: 187-196, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176694

RESUMO

Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.


Assuntos
Processamento Alternativo , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/virologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Processamento Alternativo/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
16.
Ann Transplant ; 13(1): 20-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18344940

RESUMO

BACKGROUND: Xenotransplantation from pig to humans may be associated with the risk of transmission of porcine endogenous retroviruses (PERVs) that are present in the genome of all pigs and that infect human cells in vitro. However, it remains unclear whether PERVs infect transplant recipients in vivo and, if so, whether they are pathogenic. It is therefore essential to perform in vivo infection studies in animal models. MATERIAL/METHODS: To study PERV transmission in rats, rat primary cells and cell lines were treated in vitro with virus from different sources. Based on the assumption that susceptible cell lineages not yet tested in vitro could be present in the animal, PERV was inoculated into naïve and immunosuppressed animals. To investigate PERV transmission in a long-term exposure experiment, sera from animals grafted with pig Langerhans islet cells were tested in a Western blot assay for antibodies against PERVs. The animals were treated with streptozotocin to induce diabetes and microencapsulated and non-microencapsulated pig islet cells were applied without immunosuppression. RESULTS: No productive infection of a few selected rat primary cells or cell lines was observed in vitro. PERV-specific antibodies were found in none of the animals and no integration of PERV into rat cells of different organs was observed, indicating that infection had not occurred. CONCLUSIONS: This report demonstrates a lack of infection of rats in vivo even during immunosuppression or long-term exposure (up to 460 days) to a functioning xenotransplant. This report also shows that rats possibly due to a low receptor concentration on their cells are not a suitable animal model to study PERV transmission in vivo.


Assuntos
Retrovirus Endógenos , Transplante das Ilhotas Pancreáticas/fisiologia , Infecções por Retroviridae/transmissão , Transplante Heterólogo/fisiologia , Animais , Retrovirus Endógenos/genética , Ratos , Ratos Wistar , Infecções por Retroviridae/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Segurança , Suínos
17.
EBioMedicine ; 33: 230-241, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29937069

RESUMO

As the target organ for numerous pathogens, the lung epithelium exerts critical functions in health and disease. However, research in this area has been hampered by the quiescence of the alveolar epithelium under standard culture conditions. Here, we used human distal airway epithelial cells (DAECs) to generate alveolar epithelial cells. Long-term, robust growth of human DAECs was achieved using co-culture with feeder cells and supplementation with epidermal growth factor (EGF), Rho-associated protein kinase inhibitor Y27632, and the Notch pathway inhibitor dibenzazepine (DBZ). Removal of feeders and priming with DBZ and a cocktail of lung maturation factors prevented the spontaneous differentiation into airway club cells and instead induced differentiation to alveolar epithelial cells. We successfully transferred this approach to chicken distal airway cells, thus generating a zoonotic infection model that enables studies on influenza A virus replication. These cells are also amenable for gene knockdown using RNAi technology, indicating the suitability of the model for mechanistic studies into lung function and disease.


Assuntos
Células Epiteliais Alveolares/citologia , Brônquios/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Vírus da Influenza A/fisiologia , Células Epiteliais Alveolares/virologia , Amidas/farmacologia , Animais , Diferenciação Celular , Linhagem Celular , Galinhas , Meios de Cultura/química , Dibenzazepinas/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Alimentadoras/citologia , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Piridinas/farmacologia , Replicação Viral
18.
Cell Rep ; 20(10): 2384-2395, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877472

RESUMO

Activation of transcription factor NF-κB is a hallmark of infection with the gastric pathogen Helicobacter pylori, associated with inflammation and carcinogenesis. Genome-wide RNAi screening revealed numerous host factors involved in H. pylori-, but not IL-1ß- and TNF-α-dependent NF-κB regulation. Pathway analysis including CRISPR/Cas9-knockout and recombinant protein technology, immunofluorescence microscopy, immunoblotting, mass spectrometry, and mutant H. pylori strains identified the H. pylori metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (ßHBP) as a cagPAI type IV secretion system (T4SS)-dependent effector of NF-κB activation in infected cells. Upon pathogen-host cell contact, TIFA forms large complexes (TIFAsomes) including interacting host factors, such as TRAF2. NF-κB activation, TIFA phosphorylation, and TIFAsome formation depend on a functional ALPK1 kinase, highlighting the ALPK1-TIFA axis as a core innate immune pathway. ALPK1-TIFA-mediated NF-κB activation was independent of CagA protein translocation, indicating that CagA translocation and HBP delivery to host cells are distinct features of the pathogen's T4SS.


Assuntos
Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo IV/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Microscopia de Fluorescência , NF-kappa B/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo IV/genética
19.
Nat Commun ; 7: 11320, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27177310

RESUMO

Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/genética , Genoma Humano/genética , RNA Interferente Pequeno/genética , Replicação Viral/efeitos dos fármacos , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Furanos/farmacologia , Perfilação da Expressão Gênica/métodos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Pimozida/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/genética
20.
Virology ; 492: 118-29, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26914510

RESUMO

The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA1 D130E, HA2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production.


Assuntos
Adaptação Fisiológica/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , RNA Viral/genética , Receptores Virais/genética , Animais , Galinhas , Cães , Células Epiteliais/virologia , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/metabolismo , Receptores Virais/metabolismo , Genética Reversa , Inoculações Seriadas , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa