Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31351148

RESUMO

Thermal flight performance curves (TFPCs) may be a useful proxy for determining dispersal on daily timescales in winged insect species. Few studies have assessed TFPCs across a range of species under standard conditions despite that they may be useful in predicting variation in performance, abundance or geographic range shifts with forecast climate variability. Indeed, the factors determining realized dispersal within and among flying insect species are generally poorly understood. To better understand how flight performance may be correlated with geographic range extent and potential latitudinal climate variability, we estimated the thermal performance curves of flight ability in 11 Drosophilidae species (in 4 °C increments across 16-28 °C) after standard laboratory rearing for two generations. We tested if key morphological, evolutionary or ecological factors (e.g. species identity, sex, body mass, wing loading, geographic range size) predicted traits of TFPCs (including optimum temperature, maximum performance, thermal breadth of performance) or flight ability (success/failure to fly). Although several parameters of TFPCs varied among species these were typically not statistically significant probably owing to the relatively small pool of species assessed and the limited trait variation detected. The best explanatory model of these flight responses across species included significant positive effects of test temperature and wing area. However, the rank of geographic distribution breadth and phylogeny failed to explain significant variation in most of the traits, except for thermal performance breadth, of thermal flight performance curves among these 11 species. Future studies that employ a wider range of Drosophilidae species, especially if coupled with fine-scale estimates of species' environmental niches, would be useful.


Assuntos
Drosophila/fisiologia , Voo Animal/fisiologia , Geografia , Temperatura , Animais , Feminino , Masculino , Filogenia , Estatísticas não Paramétricas
2.
Artigo em Inglês | MEDLINE | ID: mdl-30502471

RESUMO

Dispersal is a central requirement of a successful sterile insect release programme, but field-released false codling moth (FCM) typically suffer from poor dispersal ability, especially at low ambient temperatures. Here we test the hypothesis that poor activity and dispersal in FCM is caused by delayed or perturbed recovery of ion and/or water homeostasis after chilling for handling and transport prior to field release. Hemolymph and flight muscle were collected from two treatment groups at three time points that targeted thermal conditions above and below the chill coma induction threshold of ~ 6 °C: 1) control moths kept at 25 °C, 2) moths exposed to 3 °C or 9 °C for 4 h, and 3) moths allowed to recover at 25 °C for 24 h after exposure to either 3 °C or 9 °C. We measured concentrations of Na+, K+ and Mg2+ in the hemolymph and muscle collected at each time point. Exposure to a chill-coma inducing temperature had little effect overall on ion balance in the hemolymph and flight muscle of false codling moth, but hemolymph [Na+] decreased from 10.4 ±â€¯0.4 mM to 6.9 ±â€¯0.7 mM as moths were chilled to 3 °C and then increased to 10.4 ±â€¯0.9 mM after the 24 h recovery period. In the 9 °C cooling treatment, [K+] increased from 8.2 ±â€¯0.5 mM during chilling to 14.1 ±â€¯1.9 mM after the 24 h recovery period. No changes were seen in equilibrium potentials in either of the ions measured. Thus, we did not find evidence that water and ion homeostasis are lost by the moths in chill coma and conclude that reduced dispersal in field-released moths is not direct a consequence of the costs of re-establishment of homeostasis.


Assuntos
Temperatura Baixa , Homeostase , Lepidópteros/fisiologia , Magnésio/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Aclimatação , Animais
3.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36510844

RESUMO

The false codling moth (FCM; Thaumatotibia leucotreta, Meyrick; Lepidoptera: Tortricidae) is a highly polyphagous, major agricultural pest indigenous to sub-Saharan Africa. With growing international trade, there is an increasing concern about introducing this pest into other countries. In South Africa, FCM poses a risk to multiple crops, and is currently suppressed through a combination of chemical, microbial, cultural, augmentative biological control, and the sterile insect technique. Compared with other lepidopteran agricultural pests, such as codling moth Cydia pomonella, genetic and other -omic resources for FCM have not been as well developed and/or not made publicly available to date. The need to develop genomic resources to address questions around insecticide resistance, chemosensory capabilities, and ultimately, develop novel control methods (e.g. gene editing) of this pest is highlighted. In this study, an adult male was sequenced using long-read PacBio Sequel II reads and Illumina NextSeq short reads and assembled using a hybrid assembly pipeline and Pilon error correction. Using the chromosome-level genome assembly of Cy. pomonella, we performed comparative analysis, arranged FCM scaffolds to chromosomes, and investigated genetic variation related to insecticide resistance and chemosensory capabilities. This work provides a platform upon which to build future genomic research on this economically important agricultural pest.


Assuntos
Comércio , Mariposas , Masculino , Animais , Internacionalidade , Mariposas/genética , Resistência a Inseticidas , África do Sul
4.
Curr Res Insect Sci ; 3: 100060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292492

RESUMO

Flight-reproduction trade-offs, such that more mobile individuals sacrifice reproductive output (e.g., fecundity) or incur fitness costs, are well-studied in a handful of wing-dimorphic model systems. However, these trade-offs have not been systematically assessed across reproduction-related traits and taxa in wing monomorphic species despite having broad implications for the ecology and evolution of pterygote insect species. Here we therefore determined the prevalence, magnitude and direction of flight-reproduction trade-offs on several fitness-related traits in a semi-field setting by comparing disperser and resident flies from repeated releases of five wild-caught, laboratory-reared Drosophila species, and explicitly controlling for a suite of potential confounding effects (maternal effects, recent thermal history) and potential morphological covariates (wing-loading, body mass). We found almost no systematic differences in reproductive output (egg production), reproductive fitness (offspring survival), or longevity between flying (disperser) and resident flies in our replicated releases, even if adjusting for potential morphological variation. After correction for false discovery rates, none of the five species showed evidence of a significant fitness trade-off associated with increased flight (sustained, simulated voluntary field dispersal). Our results therefore suggest that flight-reproduction trade-offs are not as common as might have been expected when assessed systematically across species and under the relatively standardized conditions and field setting employed here, at least not in the genus Drosophila. The magnitude and direction of potential dispersal- or flight-induced trade-offs, and the conditions that promote them, clearly require closer scrutiny. We argue that flight or dispersal is either genuinely cheaper than expected, or the costs manifest differently than those assessed here. Lost opportunities (i.e., time spent on mate-finding, mating or foraging) or nutrient-poor conditions could promote fitness costs to dispersal in our study system and that could be explored in future.

5.
J Insect Physiol ; 145: 104490, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773842

RESUMO

In many pests, insecticide efficacy is dependent on environmental conditions, including ambient temperature. However, it remains unknown if thermal history alters sub-lethal effects to potentially enhance or reduce pesticide resistance in the false codling moth (FCM), Thaumatotibia leucotreta. Here, using FCM, a pest of economic importance in South Africa infesting several commercial food crops, we report results of sub-lethal exposure to spinetoram, an insecticide that disrupts the nervous system. We investigate whether insecticide efficacy is temperature dependent or perhaps interacts with thermal history by testing the effect of a combination of a sub-lethal dose of spinetoram (4 mg/100 ml) and developmental temperature acclimation (22˚C and 28˚C, i.e., a few degrees above or below optimal development temperatures) on the metabolic rate, life history traits and body composition of FCM in the laboratory. A sub-lethal dose of spinetoram reduced metabolic rate of FCM pupae significantly, led to smaller pupal mass and decreased emergence rates. Additionally, males acclimated at 28 °C had a significantly higher emergence rate compared to males acclimated at 22 °C. Body water, body lipids and body protein reserves of adult FCM tended to be higher in the insecticide treatment compared to the control in the 22 °C acclimation group. In the 28 °C acclimation group, body water, lipids and proteins were lower in the insecticide treatment versus the control. Furthermore, sex influenced both emergence rate and body composition with the direction of change depending on insecticide and temperature treatments. Overall, a sub-lethal dose of spinetoram negatively affects body composition and life history traits but interacts with temperature in complex ways. Therefore, both lethal and sub-lethal effects of spinetoram on FCM, in combination with information on the thermal environment experienced by the pest, should be taken into consideration when pest control decisions are made.


Assuntos
Inseticidas , Mariposas , Masculino , Animais , Mariposas/fisiologia , Temperatura , Inseticidas/farmacologia , Nutrientes , Lipídeos
6.
Pest Manag Sci ; 79(11): 4153-4161, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37309691

RESUMO

BACKGROUND: Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance. RESULTS: The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances. CONCLUSION: Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Insects ; 13(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447757

RESUMO

Here we aimed to assess whether variation in (1) developmental temperature and (2) transport conditions influenced the low-temperature performance and flight ability of false codling moth (FCM) adults in an SIT programme. To achieve the first aim, larvae were exposed to either a (control) (constant 25 °C), a cold treatment (constant 15 °C) or a fluctuating thermal regime (FTR) (25 °C for 12 h to 15 °C for 12 h) for 5 days, whereafter larvae were returned to 25 °C to pupate and emerge. After adult emergence, critical thermal minimum, chill coma recovery time, life history traits and laboratory flight ability were scored. For the second aim, adult FCM were exposed to 4 or 25 °C with or without vibrations to simulate road transportation. After the pre-treatments, flight ability, spontaneous behaviour (i.e., muscle coordination by monitoring whether the moth moved out of a defined circle or not) and chill coma recovery time were determined. The first experiment showed that FTR led to enhanced cold tolerance, increased flight performance and high egg-laying capacity with minimal costs. The second experiment showed that transport conditions currently in use did not appear to adversely affect flight and low-temperature performance of FCM. These results are important for refining conditions prior to and during release for maximum field efficacy in an SIT programme for FCM.

8.
Curr Res Insect Sci ; 2: 100048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683956

RESUMO

Insects have the ability to readily adapt to changes in environmental conditions, however the strength of local environmental adaptation signals under divergent conditions and the occurrence of trait inertia after relaxation of selection, remains poorly understood, especially for traits of climate stress resistance (CSR) and their phenotypic plasticity. The strength of environmental adaptation signals depend on several selection pressures present in the local environment, while trait inertia often occurs when there is a weakening or removal of a source of selection. Here, using Drosophila melanogaster, we asked whether signals of adaptation in CSR traits (critical thermal limits, heat and chill survival and, desiccation and starvation resistance) persist after exposure to laboratory culture for different durations (two vs. ten generations) across four climatically distinct populations. We show that culture duration has large effects on CSR traits and can both amplify or dilute signals of local adaptation. Effects were however dependent upon interactions between the source population, acclimation (adult acclimation at either 18 °C, 23 °C or 28 °C) conditions and the sex of the flies. Trait plasticity is markedly affected by the interaction between the source population, the specific acclimation conditions employed, and the duration in the laboratory. Therefore, a complex matrix of dynamic CSR trait responses is shown in space and time. Given these strong interaction effects, 'snapshot' estimates of environmental adaptation can result in misleading conclusions about the fitness consequences of climate variability.

9.
J Insect Physiol ; 140: 104403, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667397

RESUMO

Cold acclimation may enhance low temperature flight ability, and salt loading can alter an insects' cold tolerance by affecting their ability to maintain ion balance in the cold. Presently however, it remains unclear if dietary salt impacts thermal acclimation of flight ability in insects. Here, we examined the effect of a combination of dietary salt loading (either NaCl or KCl) and low temperature exposure on the flight ability of Drosophila melanogaster at low (15 °C) and benign (optimal, 22 °C) temperatures. Additionally, we determined whether dietary salt supplementation translates into increased K+ and Na+ levels in the bodies of D. melanogaster. Lastly, we determined whether salt supplementation impacts body mass and wing morphology, to ascertain whether any changes in flight ability were potentially driven by flight-related morphometric variation. In control flies, we find that cold acclimation enhances low temperature flight ability over non-acclimated flies confirming the beneficial acclimation hypothesis. By contrast, flies supplemented with KCl that were cold acclimated and tested at a cold temperature had the lowest flight ability, suggesting that excess dietary KCl during development negates the beneficial cold acclimation process that would have otherwise taken place. Overall, the NaCl-supplemented flies and the control group had the greatest flight ability, whilst those fed a KCl-supplemented diet had the lowest. Dietary salt supplementation translated into increased Na+ and K+ concentration in the body tissues of flies, confirming that dietary shifts are reflected in changes in body composition and are not simply regulated out of the body by homeostasis over the course of development. Flies fed with a KCl-supplemented diet tended to be larger with larger wings, whilst those reared on the control or NaCl-supplemented diet were smaller with smaller wings. Additionally, the flies with greater flight ability tended to be smaller and have lower wing loading. In conclusion, dietary salts affected wing morphology as well as ion balance, and dietary KCl seemed to have a detrimental effect on cold acclimation responses of flight ability in D. melanogaster.


Assuntos
Drosophila melanogaster , Cloreto de Sódio na Dieta , Aclimatação/fisiologia , Animais , Temperatura Baixa , Suplementos Nutricionais , Drosophila melanogaster/fisiologia , Sódio , Cloreto de Sódio/farmacologia
10.
Sci Rep ; 10(1): 5601, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221391

RESUMO

In herbivorous insects, the degree of host specialisation may be one ecological factor that shapes lifespan. Because host specialists can only exploit a limited number of plants, their lifecycle should be synchronised with host phenology to allow reproduction when suitable hosts are available. For species not undergoing diapause or dormancy, one strategy to achieve this could be evolving long lifespans. From a physiological perspective, oxidative stress could explain how lifespan is related to degree of host specialisation. Oxidative stress caused by Reactive Oxygen Species (ROS) might help underpin ageing (the Free Radical Theory of Aging (FRTA)) and mediate differences in lifespan. Here, we investigated how lifespan is shaped by the degree of host specialisation, phylogeny, oxidative damage accumulation and antioxidant protection in eight species of true fruit flies (Diptera: Tephritidae). We found that lifespan was not constrained by species relatedness or oxidative damage (arguing against the FRTA); nevertheless, average lifespan was positively associated with antioxidant protection. There was no lifespan difference between generalist and specialist species, but most of the tephritids studied had long lifespans in comparison with other dipterans. Long lifespan may be a trait under selection in fruit-feeding insects that do not use diapause.


Assuntos
Longevidade , Estresse Oxidativo , Tephritidae/fisiologia , Animais , Ceratitis capitata/fisiologia , Feminino , Herbivoria , Masculino , Filogenia , Tephritidae/genética
11.
Sci Rep ; 8(1): 9849, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959431

RESUMO

Traits of thermal sensitivity or performance are typically the focus of species distribution modelling. Among-population trait variation, trait plasticity, population connectedness and the possible climatic covariation thereof are seldom accounted for. Here, we examine multiple climate stress resistance traits, and the plasticity thereof, for a globally invasive agricultural pest insect, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). We also accounted for body size and population genetic connectivity among distinct populations from diverse bioclimatic regions across southern Africa. Desiccation resistance, starvation resistance, and critical thermal minimum (CTmin) and maximum (CTmax) of C. capitata varied between populations. For thermal tolerance traits, patterns of flexibility in response to thermal acclimation were suggestive of beneficial acclimation, but this was not the case for desiccation or starvation resistance. Population differences in measured traits were larger than those associated with acclimation, even though gene flow was high. Desiccation resistance was weakly but positively affected by growing degree-days. There was also a weak positive relationship between CTmin and temperature seasonality, but CTmax was weakly but negatively affected by the same bioclimatic variable. Our results suggest that the invasive potential of C. capitata may be supported by adaptation of tolerance traits to local bioclimatic conditions.


Assuntos
Aclimatação , Ceratitis capitata/fisiologia , Clima , Geografia , Estresse Fisiológico , África Austral , Animais , Fenótipo , Temperatura
12.
PLoS One ; 8(1): e54281, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342117

RESUMO

The invasive Mediterranean fruit fly (medfly), Ceratitis capitata, is one of the major agricultural and economical pests globally. Understanding invasion risk and mitigation of medfly in agricultural landscapes requires knowledge of its population structure and dispersal patterns. Here, estimates of dispersal ability are provided in medfly from South Africa at three spatial scales using molecular approaches. Individuals were genotyped at 11 polymorphic microsatellite loci and a subset of individuals were also sequenced for the mitochondrial cytochrome oxidase subunit I gene. Our results show that South African medfly populations are generally characterized by high levels of genetic diversity and limited population differentiation at all spatial scales. This suggests high levels of gene flow among sampling locations. However, natural dispersal in C. capitata has been shown to rarely exceed 10 km. Therefore, documented levels of high gene flow in the present study, even between distant populations (>1600 km), are likely the result of human-mediated dispersal or at least some form of long-distance jump dispersal. These findings may have broad applicability to other global fruit production areas and have significant implications for ongoing pest management practices, such as the sterile insect technique.


Assuntos
Ceratitis capitata/genética , Animais , Ceratitis capitata/classificação , DNA Mitocondrial/genética , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional , Repetições de Microssatélites/genética , África do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa