Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(20): 4903-4912, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28426229

RESUMO

The catalytic oxidation of carbon by molecular oxygen was studied using C/Pt, Pt/C, Pt/Al2O3/C, Pt/CeO2/C, Al2O3/C, and CeO2/C model samples prepared by hole-mask colloidal lithography. By this technique, the degree of contact between platinum and carbon was controlled with high precision. The oxidation of carbon was monitored using atomic force microscopy and scanning electron microscopy. The results show that Pt in direct contact with carbon catalyzes the oxidation of carbon by spillover of dissociated oxygen from Pt to carbon. By physically separating Pt and carbon with a 10 nm thin spacer layer of Al2O3, the oxygen spillover was entirely blocked. However, through a corresponding spacer layer of CeO2, carbon oxidation was still observed, either by oxygen spillover from Pt to carbon or directly dissociated on the ceria, although at a slower rate compared to the case with no spacer layer between Pt and carbon.

2.
Langmuir ; 32(11): 2708-17, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907859

RESUMO

We have investigated the interaction of graphene oxide (GO) sheets with supported lipid membranes with focus on how the interaction depends on GO sheet size (three samples in the range of 90-5000 nm) and how it differs between small and large liposomes. The layer-by-layer assembly of these materials into multilamellar structures, as discovered in our previous research, is now further explored. The interaction processes were monitored by two complementary, real time, surface-sensitive analytical techniques: quartz crystal microbalance with dissipation monitoring (QCM-D, electroacoustic sensing) and indirect nanoplasmonic sensing (INPS, optical sensing). The results show that the sizes of each of the two components, graphene oxide and liposomes, are important parameters affecting the resulting multilayer structures. Spontaneous liposome rupture onto graphene oxide is obtained for large lateral dimensions of the graphene oxide sheets.


Assuntos
Grafite/química , Lipossomos/química , Colina/análogos & derivados , Colina/química , Ácidos Palmíticos/química , Tamanho da Partícula , Fosfatidilcolinas/química , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício
3.
Langmuir ; 32(25): 6486-95, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27182843

RESUMO

The fate of adsorbed lipid vesicles on solid supports depends on numerous experimental parameters and typically results in the formation of a supported lipid bilayer (SLB) or an adsorbed vesicle layer. One of the poorly understood questions relates to how divalent cations appear to promote SLB formation in some cases. The complexity arises from the multiple ways in which divalent cations affect vesicle-substrate and vesicle-vesicle interactions as well as vesicle properties. These interactions are reflected, e.g., in the degree of deformation of adsorbed vesicles (if they do not rupture). It is, however, experimentally challenging to measure the extent of vesicle deformation in real-time. Herein, we investigated the effect of divalent cations (Mg(2+), Ca(2+), Sr(2+)) on the adsorption of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles onto silicon oxide- and titanium oxide-coated substrates. The vesicle adsorption process was tracked using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurement techniques. On silicon oxide, vesicle adsorption led to SLB formation in all cases, while vesicles adsorbed but did not rupture on titanium oxide. It was identified that divalent cations promote increased deformation of adsorbed vesicles on both substrates and enhanced rupture on silicon oxide in the order Ca(2+) > Mg(2+) > Sr(2+). The influence of divalent cations on different factors in these systems is discussed, clarifying experimental observations on both substrates. Taken together, the findings in this work offer insight into how divalent cations modulate the interfacial science of supported membrane systems.

4.
Soft Matter ; 10(1): 187-95, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24651504

RESUMO

DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. It was found that liposomes smaller than 100 nm spontaneously rupture on the silica surface when deposited at a temperature above Tm and at a critical surface coverage, following a well-established pathway. In contrast, DPPC liposomes larger than 160 nm do not rupture on the surface when adsorbed at 22 °C or at 50 °C. However, when liposomes of this size are first adsorbed at 22 °C and at a high enough surface coverage, after which they are subject to a constant temperature gradient up to 50 °C, they rupture and fuse to a bilayer, a process that is initiated around Tm. The results are discussed and interpreted considering a combination of effects derived from liposome-surface and liposome-liposome interactions, different softness/stiffness and shape of liposomes below and above Tm, the dynamics and thermal activation of the bilayers occurring around Tm and (for liposomes containing 33% of NaCl) osmotic pressure. These findings are valuable both for preparation of supported lipid bilayer cell membrane mimics and for designing temperature-responsive material coatings.


Assuntos
Bicamadas Lipídicas/síntese química , Lipídeos/química , Lipossomos/química , Dióxido de Silício/química , Temperatura , Bicamadas Lipídicas/química , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
5.
Nano Lett ; 13(4): 1743-50, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23484456

RESUMO

The occurrence of plasmon resonances in thin (~20 nm) Al and Au films, perforated with nanoholes, was studied. In both metals, two plasmon resonances were observed: (i) A surface plasmon polariton mode associated with a maximum in extinction and (ii) a localized resonance in the nanohole associated with a minimum in extinction. By varying the diameter of the nanoholes, the scaling of the peak positions of the plasmon resonances was determined as a function of hole diameter. In the large nanohole limit, the plasmon peak positions depend only on the nanohole diameter being independent of the material. On the other hand, for small nanoholes the plasmon peak positions are material and size dependent. In contrast to Al films where the localized plasmons can be excited from the near-IR to the UV, no plasmon resonances were observed for Au at energies above the interband threshold (2.4 eV). The interaction between a distinct interband transition in Al at 1.5 eV and the localized plasmon resonance is considered in detail. We observe for the first time experimentally a noncrossing behavior of the interband transition and the localized plasmon resonance. The energy (size) dependence of surface plasmon peak width, being a measure for the decay/damping of the latter, is very different for the two metals. This can be explained by considering the different decay mechanisms active in the two metals. Apart from these basic plasmonics results, we test the potential of using the shifts of the plasmon resonances in perforated Al films to follow the atmospheric oxidation/corrosion kinetics of Al. The results are quantified by model calculations. The obtained kinetic law for the oxide growth is in good agreement with a previous XPS study on plain Al films. This suggests that the nanohole-induced plasmon resonances can be a sensitive and simple measure for Al corrosion and metal corrosion in general.


Assuntos
Alumínio/química , Ouro/química , Nanoestruturas/química , Óxidos/química , Simulação por Computador , Cinética , Membranas Artificiais , Metais , Modelos Teóricos , Oxirredução , Tamanho da Partícula , Ressonância de Plasmônio de Superfície
6.
Langmuir ; 29(23): 7151-61, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23713406

RESUMO

In this study, we have applied three techniques to simultaneously and in situ study the initial stage of corrosion of copper protected by a self-assembled monolayer of octadecanethiol (ODT). We combined quartz crystal microbalance with dissipation monitoring (QCM-D), indirect nanoplasmonic sensing (INPS), and vibrational sum frequency spectroscopy (VSFS) and obtained complementary information about mass uptake and optical and spectroscopic changes taking place during the initial corrosion phase. All three techniques are very sensitive to the formation of a corrosion film (thickness in the range 0-0.41 nm) under mildly corrosive conditions (dry air, <0.5% relative humidity). The three techniques yield information about the viscoelasticity of the corrosion film (QCM-D), the homogeneity of the corrosion reaction on the surface (INPS), and the stability of the ODT protection layer (VSFS). Furthermore, by also studying the corrosion process in humid air (ca. 70% relative humidity), we illustrate how the combination of these techniques can be used to differentiate between simultaneously occurring processes, such as water adsorption and corrosion product formation.


Assuntos
Cobre/química , Técnicas de Microbalança de Cristal de Quartzo , Compostos de Sulfidrila/química , Tamanho da Partícula , Espectrofotometria Infravermelho , Propriedades de Superfície , Vibração
7.
Nano Lett ; 12(7): 3356-62, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22657914

RESUMO

We have investigated the interaction between graphene oxide and lipid membranes, using both supported lipid membranes and supported liposomes. Also, the reverse situation, where a surface coated with graphene oxide was exposed to liposomes in solution, was studied. We discovered graphene oxide-induced rupture of preadsorbed liposomes and the formation of a nanocomposite, bio-nonbio multilayer structure, consisting of alternating graphene oxide monolayers and lipid membranes. The assembly process was monitored in real time by two complementary surface analytical techniques (the quartz crystal microbalance with dissipation monitoring technique (QCM-D) and dual polarization interferometry (DPI)), and the formed structures were imaged with atomic force microscopy (AFM). From a basic science point of view, the results point toward the importance of electrostatic interactions between graphene oxide and lipid headgroups. Implications from a more practical point of view concern structure-activity relationship for biological health/safety aspects of graphene oxide and the potential of the nanocomposite, multilayer structure as scaffolds for advanced biomolecular functions and sensing applications.


Assuntos
Grafite/química , Membranas Artificiais , Nanocompostos/química , Óxidos/química , Fosfatidilcolinas/química , Lipossomos/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Nano Lett ; 12(5): 2397-403, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22486708

RESUMO

Indirect nanoplasmonic sensing (INPS) is an experimental platform exploiting localized surface plasmon resonance (LSPR) detection of processes in nanomaterials, molecular assemblies, and films at the nanoscale. Here we have for the first time applied INPS to study dye molecule adsorption/impregnation of two types of TiO(2) materials: thick (10 µm) mesoporous films of the kind used as photoanode in dye-sensitized solar cells (DSCs), with particle/pore size in the range of 20 nm, and thin (12-70 nm), dense, and flat films. For the thick-film experiments plasmonic Au nanoparticles were placed at the hidden, internal interface between the sensor surface and the mesoporous TiO(2). This approach provides a unique opportunity to selectively follow dye adsorption locally in the hidden interface region inside the material and inspires a generic and new type of nanoplasmonic hidden interface spectroscopy. The specific DSC measurement revealed a time constant of thousands of seconds before the dye impregnation front (the diffusion front) reaches the hidden interface. In contrast, dye adsorption on the dense, thin TiO(2) films exhibited much faster, Langmuir-like monolayer formation kinetics with saturation on a time scale of order 100 s. This new type of INPS measurement provides a powerful tool to measure and optimize dye impregnation kinetics of DSCs and, from a more general point of view, offers a generic experimental platform to measure adsorption/desorption and diffusion phenomena in solid and mesoporous systems and at internal hidden interfaces.

9.
Phys Chem Chem Phys ; 14(48): 16695-8, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23131964

RESUMO

The biomolecule-artificial lipid membrane interface has been investigated by QCM-D, SPR, and FRAP techniques, to study the adsorption process of ferritin on supported lipid bilayers (SLBs) of different composition and charge. Results point out to the predominant role of electrostatics in triggering the interaction of ferritin with SLBs.


Assuntos
Ferritinas/química , Bicamadas Lipídicas/química , Adsorção , Animais , Cavalos , Concentração de Íons de Hidrogênio , Eletricidade Estática
10.
Phys Chem Chem Phys ; 14(25): 9037-40, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22641293

RESUMO

Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO(2) films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured.

11.
Langmuir ; 27(2): 678-85, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21142210

RESUMO

The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 µm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.


Assuntos
Ouro/química , Dióxido de Silício/química , Adsorção , Biotina/química , Imunoglobulina G/química , Tamanho da Partícula , Estreptavidina/química , Propriedades de Superfície
12.
Nanotechnology ; 22(34): 345302, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21811012

RESUMO

Colloidal lithography (CL) is a generic name for a collection of nanolithographic techniques, based on using colloidal nanoparticles as pattern (mask)-defining entities to produce various nanostructures. A key step in CL processes is the deposition, usually by evaporation or sputtering, of the material that makes up the final nanostructures. We have for the first time combined a special version of CL, called hole-mask colloidal lithography (HCL), with electrodeposition. We demonstrate how electrodeposition of Pt onto Au and carbon substrates, through a lithographic mask, can be used to prepare well-defined nanostructured surfaces. The results are compared with evaporated structures and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry. Specific results are: (i) electrodeposition generates structures with very good adhesion, (ii) due to differences in the deposition mechanism, structures with much larger aspect (height/width) ratio can be made with electrodeposition than with evaporation and (iii) the originally deposited polycrystalline nanoparticles can be annealed into single crystals, as demonstrated by electron diffraction, SEM and TEM, before and after annealing, which is of great value for fundamental (electro)catalysis studies.

13.
Phys Chem Chem Phys ; 13(38): 16955-72, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21887432

RESUMO

The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.

14.
Nano Lett ; 10(8): 3135-41, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698628

RESUMO

For ultrathin films of a given material, light absorption is proportional to the film thickness. However, if the optical constants of the film are chosen in an optimal way, light absorption can be high even for extremely thin films and optical path length. We derive the optimal conditions and show how the maximized absorptance depends on film thickness. It is then shown that the optimal situation can be emulated by tuning of the geometric parameters in feasible nanocomposites combining plasmonic materials with semiconductors. Useful design criteria and estimates for the spatial absorption-distribution over the composite materials are provided. On the basis of efficient exchange of oscillator strength between the plasmonic and semiconductor constituents, a high quantum yield for semiconductor absorption can be achieved. The results are far-reaching with particularly promising opportunities for plasmonic solar cells.

15.
Nano Lett ; 10(3): 931-6, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20108946

RESUMO

Using the localized surface plasmon resonance as a probe in solid and liquid Sn nanoparticles of 107 nm diameter and 52 nm height, we have studied their kinetics of melting and freezing at temperature ramps and, for the first time, at fixed temperatures. During temperature ramps, the kinetics exhibit distinct hysteresis. The melting occurs near the bulk melting point while the freezing is observed at much lower temperatures so that the undercooling interval is approximately 130 K. The time scale of the freezing kinetics measured at different fixed temperatures rapidly decreases as the latter are lowered. All these findings have been quantitatively described by assuming the nucleation to occur on the edges of nanoparticles and employing the classical nucleation theory with the corresponding modifications.


Assuntos
Cristalização/métodos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Estanho/química , Simulação por Computador , Cinética , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
16.
Nano Lett ; 10(9): 3529-38, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20718400

RESUMO

Indirect nanoplasmonic sensing is a novel experimental platform for measurements of thermodynamics and kinetics in/on nanomaterials and thin films. It features simple experimental setup, high sensitivity, small sample amounts, high temporal resolution (<10(-3) s), operating conditions from UHV to high pressure, wide temperature range, and applicability to any nano- or thin film material. The method utilizes two-dimensional arrangements of nanoplasmonic Au sensor-nanoparticles coated with a thin dielectric spacer layer onto which the sample material is deposited. The measured signal is spectral shifts of the Au-sensor localized plasmons, induced by processes in/on the sample material. Here, the method is applied to three systems exhibiting nanosize effects, (i) the glass transition of confined polymers, (ii) catalytic light-off on Pd nanocatalysts, and (iii) thermodynamics and kinetics of hydrogen uptake/release in Pd nanoparticles <5 nm. In (i) and (iii), dielectric changes in the sample are detected, while (ii) demonstrates a novel optical nanocalorimetry method.

17.
Phys Rev Lett ; 104(13): 135502, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481892

RESUMO

Using a new indirect nanoplasmonic sensing method with subsecond resolution, we have studied hydriding and dehydriding kinetics of Pd nanoparticles in the size range 1.8-5.4 nm. Strong particle-size effects are observed. The scaling of the hydriding and dehydriding time scales satisfies power and power-exponential laws. The former (with an exponent of 2.9) is in perfect agreement with Monte Carlo simulations of diffusion-controlled hydriding kinetics. The latter is explained by the effect of surface tension on hydrogen desorption from the surface layer. The approach is generalizable to other reactant-nanoparticle systems.

18.
Chemphyschem ; 11(7): 1405-15, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20408159

RESUMO

The electrocatalytic oxidation of formaldehyde, which results in CO(2) and HCOOH formation, was investigated under galvanostatic conditions on nanostructured Pt/glassy carbon (GC) electrodes fabricated by employing colloidal lithography (CL). The measurements were performed on structurally well-defined model electrodes of different Pt surface coverages under different applied currents (current densities) and at constant electrolyte transport in a thin-layer flow cell connected to a differential electrochemical mass spectrometry (DEMS) setup to monitor the dynamic response of the reaction selectivity under these conditions. Periodic oscillations of the electrode potential and the CO(2) formation rate appear not only for a continuous Pt film, but also for the nanostructured Pt/GC electrodes when a critical current density is exceeded. The critical current density for achieving regular oscillation patterns increased with decreasing Pt nanodisk density. Lower oscillation frequencies of the electrode potential and lower CO(2) formation rate for nanostructured Pt/GC electrodes compared to continuous Pt film at similar applied current densities suggest that transport processes play an essential role. Moreover, from the simple periodic response of the nanostructured electrodes it follows that all individual Pt disks in the array oscillate in synchrony. This result is discussed in terms of the different modes of spatial coupling present in the system: global coupling, migration coupling and mass transport of the essential chemical species, and the coverage of corresponding adsorbates.


Assuntos
Carbono/química , Formaldeído/química , Modelos Químicos , Nanoestruturas/química , Platina/química , Dióxido de Carbono/síntese química , Dióxido de Carbono/química , Difusão , Eletrodos , Formiatos/síntese química , Formiatos/química , Vidro/química , Oxirredução , Potenciometria , Propriedades de Superfície
19.
Eur Biophys J ; 39(11): 1477-82, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20386900

RESUMO

In our analysis of protein adsorption on a lipid bilayer, the protein surface is considered to contain one or a few charged spots, and the bilayer contains a significant amount of lipids with oppositely charged head groups. After adsorption, a folded protein is assumed to change its shape slightly due to the electrostatic attraction, so that one of the spots forms a flat contact with the oppositely charged lipid heads of the lipid bilayer. With realistic parameters, this model predicts that the contribution of electrostatic interactions to the protein adsorption energy per charged amino acid-lipid pair is 16-25 kJ/mol. Thus, a few (four or five) pairs is sufficient for irreversible adsorption.


Assuntos
Bicamadas Lipídicas/química , Proteínas/química , Adsorção , Bicamadas Lipídicas/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Eletricidade Estática , Termodinâmica
20.
Analyst ; 135(2): 343-50, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20098769

RESUMO

A novel set-up combining the quartz crystal microbalance with dissipation monitoring technique (QCM-D) and electrochemical impedance spectroscopy (EIS) under flow conditions was successfully used to follow supported lipid bilayer (SLB) formation on SiO(2). This study demonstrates the simultaneous detection, in real time, of both the electrical and the structural properties of the SLB. The combination of the two techniques provided novel insights regarding the mechanism of SLB formation: we found indications for an annealing process of the lipid alkyl chains after the mass corresponding to complete bilayer coverage had been deposited. Moreover, the interaction of the SLB with the pore-forming toxin, gramicidin D (grD) was studied for grD concentrations ranging from 0.05 to 40 mg L(-1). Membrane properties were altered depending on the toxin concentration. For low grD concentrations, the electrical properties of the SLB changed upon insertion of active ion channels. For higher concentrations, the QCM-D data showed dramatic changes in the viscoelastic properties of the membrane while the EIS spectra did not change. AFM confirmed significant structural changes of the membrane at higher grD concentrations. Thus, the application of combined QCM-D and EIS detection provides complementary information about the system under study. This information will be particularly important for the continued detailed investigation of interactions at model membrane surfaces.


Assuntos
Técnicas Biossensoriais/métodos , Impedância Elétrica , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Quartzo/química , Eletroquímica , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa