Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39073670

RESUMO

BACKGROUND: We examined whether the time to positivity (TTP) and growth and detection plot graph (GDPG) created by the automated blood culture system can be used to determine the bacterial load in bacteremic patients and its potential association correlation with disease severity. METHODS: Known bacterial inocula were injected into the blood culture bottles. The GDPGs for the specific inocula were downloaded and plotted. A cohort of 30 consecutive clinical cultures positive for S. aureus and E. coli was identified. Bacterial load was determined by comparing the GDPG with the "standard" curves. Variables associated with disease severity were compared across 3 bacterial load categories (< 100, 100-1000, > 1000 CFU/mL). RESULTS: S. aureus growth was sensitive to the blood volume obtained whereas E. coli growth was less so. A 12-hour delay in sample transfer to the microbiology laboratory resulted in a decrease in TTP by 2-3 h. Mean TTP was 15 and 10 h for S. aureus and E. coli, respectively, which correlates with > 1000 CFU/mL and 500-1000 CFU/ml. For S. aureus, patients with a bacterial load > 100 CFU/mL had a higher mortality rate, (OR for death = 9.7, 95% CI 1.6-59, p = 0.01). Bacterial load > 1000 CFU/mL had an odds ratio of 6.4 (95% CI1.2-35, p = 0.03) to predict an endovascular source. For E. coli bacteremia, we did not find any correlations with disease severity. CONCLUSION: GDPG retrieved from the automated blood culture system can be used to estimate bacterial load. S.aureus bacterial load, but not E.coli, was associated with clinical outcome.

2.
Eur J Clin Microbiol Infect Dis ; 40(5): 1113-1116, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33394211

RESUMO

The purpose of this study is to explore whether a correlation exists between the bacterial load of Borrelia persica in tick-borne relapsing fever (TBRF), established by quantitative real-time PCR, and the development of Jarisch-Herxheimer reaction (JHR) after the initiation of antibiotic treatment. Forty-two blood samples were included in our study. The mean bacterial load, as established by real-time PCR, in patients who developed JHR was significantly greater than in those patients who did not develop JHR (443,293 copies vs. 140,598, p = 0.035). Accordingly, real-time PCR may assist clinicians in identifying patients at higher risk of JHR.


Assuntos
Borrelia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Febre Recorrente/microbiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Eur J Pediatr ; 179(12): 1843-1849, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32524198

RESUMO

Our aim was to evaluate the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routinely used in the microbiology laboratory for bacterial identification, for bacterial typing in the setting of extended spectrum beta-lactamase producing Klebsiella pneumoniae (ESBL-KP) outbreak in the neonatal intensive care unit (NICU). Isolates from a 2011 outbreak in the NICU were retrieved from frozen stocks and analyzed by MALDI-TOF. The MALDI typing was compared with core genome multilocus sequence typing (cg-MLST). MALDI typing divided the 33 outbreak isolates into 2 clones: sequence type (ST)-290 and 405. These results were in complete agreement with cg-MLST results. The differentiation of the outbreak isolates into two clones correlated with the patients' location in the NICU, but also with their place of residence.Conclusion: Here, we show that MALDI-TOF MS, which has been integrated into the microbiology laboratory workflow for microbial species identification, can be secondarily used for epidemiological typing at no added cost. What is Known: • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used in the microbiology laboratory for bacterial identification What is New: • MALDI typing was used for outbreak investigation in the NICU and divided the outbreak isolates into two clones • MALDI-TOF MS may be secondarily used for epidemiological typing at no added cost.


Assuntos
Unidades de Terapia Intensiva Neonatal , Infecções por Klebsiella , Klebsiella pneumoniae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Surtos de Doenças , Humanos , Recém-Nascido , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus
4.
Microbiol Spectr ; 11(3): e0389522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195188

RESUMO

As a result of the increasing use of sensitive nucleic acid amplification tests, Kingella kingae is being recognized as a common pathogen of early childhood, causing medical conditions ranging from asymptomatic oropharyngeal colonization to bacteremia, osteoarthritis, and life-threatening endocarditis. However, the genomic determinants associated with the different clinical outcomes are unknown. Employing whole-genome sequencing, we studied 125 international K. kingae isolates derived from 23 healthy carriers and 102 patients with invasive infections, including bacteremia (n = 23), osteoarthritis (n = 61), and endocarditis (n = 18). We compared their genomic structures and contents to identify genomic determinants associated with the different clinical conditions. The mean genome size of the strains was 2,024,228 bp, and the pangenome comprised 4,026 predicted genes, of which 1,460 (36.3%) were core genes shared by >99% of the isolates. No single gene discriminated between carried and invasive strains; however, 43 genes were significantly more frequent in invasive isolates, compared to asymptomatically carried organisms, and a few showed a significant differential distribution among isolates from skeletal system infections, bacteremia, and endocarditis. The gene encoding the iron-regulated protein FrpC was uniformly absent in all 18 endocarditis-associated strains but was present in one-third of other invasive isolates. Similar to other members of the Neisseriaceae family, the K. kingae differences in invasiveness and tropism for specific body tissues appear to depend on combinations of multiple virulence-associated determinants that are widely distributed throughout the genome. The potential role of the absence of the FrpC protein in the pathogenesis of endocardial invasion deserves further investigation. IMPORTANCE The wide range of clinical severities exhibited by invasive Kingella kingae infections strongly suggests that isolates differ in their genomic contents, and strains associated with life-threatening endocarditis may harbor distinct genomic determinants that result in cardiac tropism and severe tissue damage. The results of the present study show that no single gene discriminated between asymptomatically carried isolates and invasive strains. However, 43 putative genes were significantly more frequent among invasive isolates than among pharyngeal colonizers. In addition, several genes displayed a significant differential distribution among isolates from bacteremia, skeletal system infections, and endocarditis, suggesting that the virulence and tissue tropism of K. kingae are multifactorial and polygenic, depending on changes in the allele content and genomic organization. Further analysis of these putative genes may identify genomic determinants of the invasiveness of K. kingae and its affinity for specific body tissues and potential targets for a future protective vaccine.


Assuntos
Bacteriemia , Endocardite , Kingella kingae , Humanos , Pré-Escolar , Kingella kingae/genética , Virulência/genética , Fatores de Virulência/genética , Bacteriemia/patologia
5.
Travel Med Infect Dis ; 37: 101707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353631

RESUMO

BACKGROUND: On the April 25, 2015, a 7.8 magnitude earthquake struck Nepal. Soon-after, the Israel Defense Force (IDF) dispatched a tertiary field-hospital to Kathmandu. The field-hospital was equipped with a clinical laboratory with microbiology capabilities. Limited data exists regarding the spectrum of bacteria isolated from earthquake casualties. We aimed to identify the spectrum of bacteria and their mechanisms of resistance in-order to allow preparedness of antibiotic treatment protocols for future disaster scenarios. METHODS: - The field-laboratory phenotypically processed cultures from sterile and non-sterile sites as needed clinically. Later-on, the isolates were brought to Israel for quality control, definite identification and molecular characterization including mechanisms of resistance. RESULTS: A total of 82 clinical pathogens were isolated from 56 patients; 68% of them were Gram negative bacilli. The most common isolates were Enterobacteriaceae (55%) -36% carried bla-NDM and 33% produced Extended-spectrum beta-lactamase (ESBL), mostly blaCTX-M-15. Enterococcus spp were the main Gram positive bacteria isolated (22 isolates), yet, none were vancomycin resistant. The overall level of resistance was 27% MDR and 23% extensively drug resistant (XDR) bacteria. CONCLUSIONS: - Gram negative bacteria were the predominant organism cultured from the casualties, of them 77% were MDR or XDR. NDM was the most common resistance mechanism. The Antibiotic inventory of a field-hospital should be set to cover a wide and unexpected spectrum of bacteria, including resistant organisms. This report adds important information to the scarce reports of bacterial resistance in Nepal.


Assuntos
Terremotos , Unidades Móveis de Saúde , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Israel , Testes de Sensibilidade Microbiana , Nepal/epidemiologia , Estudos Retrospectivos , beta-Lactamases
6.
World Neurosurg ; 144: 258-261.e1, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32889191

RESUMO

BACKGROUND: Sinorhizobium meliloti is a phytobacterium found in the root nodules of plants, where it is involved in fixing nitrogen for delivery to the roots in exchange for a photosynthate carbon source. There have been no reported cases of S. meliloti infection in humans. We conducted a retrospective review of clinical records and diagnostic tests. CASE DESCRIPTION: An 81-year-old woman who presented to the emergency department with a 1-day history of progressive decline in her level of consciousness following a head injury and deep scalp laceration. Her medical history was significant for a ventriculoperitoneal shunt due to normal pressure hydrocephalus. Imaging studies revealed hydrocephalus and a tear in the shunt catheter. Cerebrospinal fluid analysis was not suggestive for meningitis. Cerebrospinal fluid culture revealed an unfamiliar organism, identified as S. meliloti following sequencing of its entire genome, which was considered a contaminant. The patient subsequently developed peritonitis, and the same pathogen was detected in the peritoneal fluid, suggesting distal shunt infection. Symptoms resolved after shunt removal and antibiotic treatment. Thorough history taking revealed that the patient had fallen and struck her head against a flowerpot. CONCLUSIONS: S. meliloti is a phytopathogen that should not be easily disregarded as a contaminant when isolated from human sterile fluids or tissues. Aggressive management including removal of infected hardware, if present, is required to ensure resolution of infection. It emphasizes the importance of thorough history taking.


Assuntos
Infecções Bacterianas/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Raízes de Plantas/microbiologia , Sinorhizobium meliloti , Idoso de 80 Anos ou mais , Antibacterianos , Líquido Ascítico/microbiologia , Infecções Bacterianas/líquido cefalorraquidiano , Remoção de Dispositivo , Feminino , Infecções por Bactérias Gram-Negativas/líquido cefalorraquidiano , Humanos , Hidrocefalia/complicações , Derivação Ventriculoperitoneal/efeitos adversos
7.
Pediatr Infect Dis J ; 38(11): e301-e306, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31626047

RESUMO

Bacillus cereus isolates causing an outbreak in the neonatal intensive care unit were investigated using whole-genome sequencing. The outbreak coincided with construction work performed adjacent to the neonatal intensive care unit and ceased after strict sealing of the construction area. We found the outbreak to be polyclonal, however, the clonality did not correlate with the virulence in vivo. Genotypically similar isolates were associated with both lethal/severe infection and colonization/environmental contamination. Environmental bacterial load may be a major determinant of infection, especially in high-risk patients. Clinicians should be alert to unusual increase in B. cereus isolations from clinical cultures to facilitate early recognition and investigations of Bacillus outbreaks and pseudo-outbreaks. The integration of genomics into the classical infectious disease work can augment our understanding of pathogen transmission and virulence, and can rapidly assist our response to unusual disease trends.


Assuntos
Bacillus cereus/genética , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Infecções por Bactérias Gram-Positivas/epidemiologia , Unidades de Terapia Intensiva Neonatal , Antibacterianos/uso terapêutico , Bacillus cereus/classificação , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Técnicas de Tipagem Bacteriana , Encéfalo/diagnóstico por imagem , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Feminino , Genoma Bacteriano , Genótipo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Recém-Nascido , Israel/epidemiologia , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa