Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(52): e2204302, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251779

RESUMO

Photoluminescence (PL) in state-of-the-art 2D materials suffers from narrow spectral coverage, relatively broad linewidths, and poor room-temperature (RT) functionality. The authors report ultra-narrow linewidth photo-emitters (ULPs) across the visible to near-infrared wavelength at RT in polymorphic selenium nanoflakes (SeNFs), synthesized via a hot-pressing strategy. Photo-emitters in NIR exhibit full width at half maximum (Γ) of 330 ± 90 µeV, an order of magnitude narrower than the reported ULPs in 2D materials at 300 K, and decrease to 82 ± 70 µeV at 100 K, with coherence time (τc ) of 21.3 ps. The capping substrate enforced spatial confinement during thermal expansion at 250 °C is believed to trigger a localized crystal symmetry breaking in SeNFs, causing a polymorphic transition from the semiconducting trigonal (t) to quasi-metallic orthorhombic (orth) phase. Fine structure splitting in orth-Se causes degeneracy in defect-associated bright excitons, resulting in ultra-sharp emission. Combined theoretical and experimental findings, an optimal biaxial compressive strain of -0.45% cm-1 in t-Se is uncovered, induced by the coefficient of thermal expansion mismatch at the selenium/sapphire interface, resulting in bandgap widening from 1.74 to 2.23 ± 0.1 eV. This report underpins the underlying correlation between crystal symmetry breaking induced polymorphism and RT ULPs in SeNFs, and their phase change characteristics.

2.
Nano Lett ; 21(9): 3997-4005, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881885

RESUMO

Electric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.

3.
ACS Chem Neurosci ; 14(19): 3609-3621, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37638647

RESUMO

Peptide therapeutics are robust and promising molecules for treating diverse disease conditions. These molecules can be developed from naturally occurring or mimicking native peptides, through rational design and peptide libraries. We developed a new platform for the rapid screening of the peptide therapeutics for disease targets. In the course of the study, we aimed to employ our platform to screen a new generation of peptide therapeutic candidates against aggregation-prone protein targets. Two peptide drug candidates were screened for protein aggregation-prone diseases, namely, Parkinson's and Alzheimer's diseases. Currently, there are several therapeutic applications that are only effective in masking or slowing down symptom development. Nonetheless, different approaches are being developed for inhibiting amyloid aggregation in the secondary nucleation phase, which is critical for amyloid fibril formation. Instead of targeting secondary nucleated protein structures, we tried to inhibit the aggregation of monomeric amyloid units as a novel approach for halting the disease condition. To achieve this, we combined yeast surface display and phage display library platforms. We expressed α-synuclein, amyloid ß40, and amyloid ß42 on the yeast surface, and we selected peptides by using phage display library. After iterative biopanning cycles optimized for yeast cells, several peptides were selected for interaction studies. All of the peptides have been used for in vitro characterization methods, which are quartz crystal microbalance-dissipation (QCM-D) measurement, atomic force microscopy (AFM) imaging, dot-blotting, and ThT assay, and some of them have yielded promising results in blocking fibrillization. The rest of the peptides, although, interacted with amyloid units which made them usable as a sensor molecule candidate. Therefore, peptides selected by yeast surface display and phage display library combination are good choice for diverse disease-prone molecule inhibition, particularly those inhibiting fibrillization. Additionally, these selected peptides can be used as drugs and sensors to detect diseases quickly and halt disease progression.


Assuntos
Bacteriófagos , Doenças Neurodegenerativas , Humanos , Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Biblioteca de Peptídeos , Amiloide , Proteínas Amiloidogênicas , Bacteriófagos/metabolismo
4.
ACS Med Chem Lett ; 14(12): 1821-1826, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116434

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder resulting from a significant amplification of CAG repeats in exon 1 of the Huntingtin (Htt) gene. More than 36 CAG repeats result in the formation of a mutant Htt (mHtt) protein. These amino-terminal mHtt fragments lead to the formation of misfolded proteins, which then form aggregates in the relevant brain regions. Therapies that can delay the progression of the disease are imperative to halting the course of the disease. Peptide-based drug therapies provide such a platform. Inhibitory peptides were screened against monomeric units of both wild type (Htt(Q25)) and mHtt fragments, Htt(Q46) and Htt(Q103). Fibril kinetics was studied by utilizing the Thioflavin T (ThT) assay. Atomic force microscopy was also used to study the influence of the peptides on fibril formation. These experiments demonstrate that the chosen peptides suppress the formation of fibrils in mHtt proteins and can provide a therapeutic lead for further optimization and development.

5.
Nanoscale Adv ; 3(13): 3894-3899, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133020

RESUMO

Mechanical properties of transition metal dichalcogenides (TMDCs) are relevant to their prospective applications in flexible electronics. So far, the focus has been on the semiconducting TMDCs, mostly MoX2 and WX2 (X = S, Se) due to their potential in optoelectronics. A comprehensive understanding of the elastic properties of metallic TMDCs is needed to complement the semiconducting TMDCs in flexible optoelectronics. Thus, mechanical testing of metallic TMDCs is pertinent to the realization of the applications. Here, we report on the atomic force microscopy-based nano-indentation measurements on ultra-thin 2H-TaS2 crystals to elucidate the stretching and breaking of the metallic TMDCs. We explored the elastic properties of 2H-TaS2 at different thicknesses ranging from 3.5 nm to 12.6 nm and find that the Young's modulus is independent of the thickness at a value of 85.9 ± 10.6 GPa, which is lower than the semiconducting TMDCs reported so far. We determined the breaking strength as 5.07 ± 0.10 GPa which is 6% of the Young's modulus. This value is comparable to that of other TMDCs. We used ab initio calculations to provide an insight into the high elasticity measured in 2H-TaS2. We also performed measurements on a small number of 1T-TaTe2, 3R-NbS2 and 1T-NbTe2 samples and extended our ab initio calculations to these materials to gain a deeper understanding on the elastic and breaking properties of metallic TMDCs. This work illustrates that the studied metallic TMDCs are suitable candidates to be used as additives in composites as functional and structural elements and for flexible conductive electronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa