Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 25(2): 1308-1313, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158014

RESUMO

In this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 µm is formed with the rare earth ions diffused into its wall. The doped microbubble is pumped at 980 nm and lases in the emission band of the Er3+ ions at 1535 nm. The laser wavelength can be shifted by aerostatic pressure tuning of the whispering gallery modes of the microbubble. Up to 240 pm tuning is observed with 2 bar of applied pressure. We also show that the doped microbubble could be used as a compact, tunable laser source.

2.
Opt Lett ; 41(22): 5266-5269, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842109

RESUMO

Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 µm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa