Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 141, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297065

RESUMO

To enhance the practice of farmed-coral transplantation, we conducted a trial of an approach called "Reef Carpets" (RC), which draws inspiration from the commercial turf-grass sod in land-based lawn gardening. Three 8.4m2 RCs were established on a sandy seabed, containing preselected combinations of branching corals (Acropora cf. variabilis, Pocillopora damicornis, Stylophora pistillata) with nursery recruited dwellers, and were monitored for 17-months. Corals within RCs grew, supported coral recruitment and offered ecological habitats for coral-associated organisms. While the unstable sediment underneath the RCs increased corals' partial mortalities, corals managed to grow and propagate. The extent of fish and gastropods corallivory varied among the coral species and planulation of Stylophora transplants was significantly higher than same-size natal-colonies. The RCs provided conducive environments for fish/invertebrate communities (183 taxa), and each coral species influenced specifically species-diversity and reef-associated communities. Even dead corals played crucial roles as habitats for reef biota, sustaining >80% of the RCs diversity; hence, they should not be considered automatically as indicators of failure. RCs scaled-up reef restoration and generated, in short periods, new reefs in denuded zones with enhanced biodiversity. Yet, RCs employment on soft-beds could be improved by using more structured artificial frameworks, requiring further research efforts.


Assuntos
Antozoários , Animais , Recifes de Corais , Sobrevivência , Pisos e Cobertura de Pisos , Biodiversidade , Peixes
2.
PeerJ ; 5: e3732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894640

RESUMO

Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL-1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa