RESUMO
BACKGROUND: Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. METHODS: The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. RESULTS: Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M-56.12 M in sham vs. 51.08 M-57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve ligation. CONCLUSION: Our findings suggest that next generation RNA sequencing can be used as a promising approach to analyze the changes of whole transcriptomes in dorsal root ganglia following nerve injury and to possibly identify new targets for prevention and treatment of neuropathic pain.
Assuntos
Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica/métodos , Traumatismos dos Nervos Periféricos/genética , Processamento Alternativo/genética , Animais , Gânglios Espinais/patologia , Genoma , Hiperalgesia/complicações , Hiperalgesia/genética , Ligadura , Vértebras Lombares/patologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais/genética , Nervos Espinhais/patologiaRESUMO
BACKGROUND: Chronic stress has been reported to increase basal pain sensitivity and/or exacerbate existing persistent pain. However, most surgical patients have normal physiological and psychological health status such as normal pain perception before surgery although they do experience short-term stress during pre- and post-operative periods. Whether or not this short-term stress affects persistent postsurgical pain is unclear. RESULTS: In this study, we showed that pre- or post-surgical exposure to immobilization 6 h daily for three consecutive days did not change basal responses to mechanical, thermal, or cold stimuli or peak levels of incision-induced hypersensitivity to these stimuli; however, immobilization did prolong the duration of incision-induced hypersensitivity in both male and female rats. These phenomena were also observed in post-surgical exposure to forced swimming 25 min daily for 3 consecutive days. Short-term stress induced by immobilization was demonstrated by an elevation in the level of serum corticosterone, an increase in swim immobility, and a decrease in sucrose consumption. Blocking this short-term stress via intrathecal administration of a selective glucocorticoid receptor antagonist, RU38486, or bilateral adrenalectomy significantly attenuated the prolongation of incision-induced hypersensitivity to mechanical, thermal, and cold stimuli. CONCLUSION: Our results indicate that short-term stress during the pre- or post-operative period delays postoperative pain recovery although it does not affect basal pain perception. Prevention of short-term stress may facilitate patients' recovery from postoperative pain.
Assuntos
Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Dor Pós-Operatória/fisiopatologia , Estresse Fisiológico , Estresse Psicológico , Animais , Corticosterona/sangue , Feminino , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Mifepristona/farmacologia , Modelos Animais , Ratos , Ratos Sprague-Dawley , Restrição FísicaRESUMO
The continued prevalence of chronic low back pain (CLBP) is a testament to our lack of understanding of the potential causes, leading to significant treatment challenges. CLBP is the leading cause of years lived with disability and the fifth leading cause of disability-adjusted life-years. No single non-pharmacologic, pharmacologic, or interventional therapy has proven effective as treatment for the majority of patients with CLBP. Although non-pharmacologic therapies are generally helpful, they are often ineffective as monotherapy and many patients lack adequate access to these treatments. Noninvasive treatment measures supported by evidence include physical and chiropractic therapy, yoga, acupuncture, and non-opioid and opioid pharmacologic therapy; data suggest a moderate benefit, at most, for any of these therapies. Until our understanding of the pathophysiology and treatment of CLBP advances, clinicians must continue to utilize rational multimodal treatment protocols. Recent Centers for Disease Control and Prevention guidelines for opioid prescribing recommend that opioids not be utilized as first-line therapy and to limit the doses when possible for fear of bothersome or dangerous adverse effects. In combination with the current opioid crisis, this has caused providers to minimize or eliminate opioid therapy when treating patients with chronic pain, leaving many patients suffering despite optimal nonopioid therapies. Therefore, there remains an unmet need for effective and tolerable opioid receptor agonists for the treatment of CLBP with improved safety properties over legacy opioids. There are several such agents in development, including opioids and other agents with novel mechanisms of action. This review critiques non-pharmacologic and pharmacologic treatment modalities for CLBP and examines the potential of novel opioids and other analgesics that may be a useful addition to the treatment options for patients with chronic pain.
RESUMO
Historically, phantom limb pain (PLP) develops in 50-80% of amputees and may arise within days following an amputation for reasons presently not well understood. Our case involves a 29-year-old male with previous surgical amputation who develops PLP after the performance of a femoral nerve block. Although there have been documented cases of reactivation of PLP in amputees after neuraxial technique, there have been no reported events associated with femoral nerve blockade. We base our discussion on the theory that symptoms of phantom limb pain are of neuropathic origin and attempt to elaborate the link between regional anesthesia and PLP. Further investigation and understanding of PLP itself will hopefully uncover a relationship between peripheral nerve blocks targeting an affected limb and the subsequent development of this phenomenon, allowing physicians to take appropriate steps in prevention and treatment.