Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(8): e63592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38568023

RESUMO

Distal arthrogryposis type 5D (DA5D) is clinically characterized by knee extension contractures, distal joint contractures, clubfoot, micrognathia, ptosis, and scoliosis. We report nine affected individuals from eight unrelated Indian families with DA5D. Although the overall musculoskeletal phenotype is not very distinct from other distal arthrogryposis, the presence of fixed knee extension contractures with or without scoliosis could be an important early pointer to DA5D. We also report a possible founder variant in ECEL1 along with four novel variants and further expand the genotypic spectrum of DA5D.


Assuntos
Artrogripose , Efeito Fundador , Fenótipo , Humanos , Artrogripose/genética , Artrogripose/patologia , Masculino , Feminino , Índia , Criança , Pré-Escolar , Linhagem , Adolescente , Mutação/genética , Lactente , Estudos de Associação Genética , Estudos de Coortes , Genótipo , Adulto , Metaloendopeptidases
2.
Proteins ; 91(3): 363-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36193975

RESUMO

The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.


Assuntos
Berberina , Salmonella typhi , NADP , Quercetina , Escopoletina , Antibacterianos/farmacologia
3.
J Cell Biochem ; 123(4): 719-735, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35040172

RESUMO

The Human Aurora Kinase (AURK) protein family is the key player of cell cycle events including spindle assembly, kinetochore formation, chromosomal segregation, centrosome separation, microtubule dynamics, and cytokinesis. Their aberrant expression has been extensively linked with chromosomal instability in addition to derangement of multiple tumor suppressors and oncoprotein regulated pathways. Therefore, the AURK family of kinases is a promising target for the treatment of various types of cancer. Over the past few decades, several potential inhibitors of AURK proteins have been identified and have reached various phases of clinical trials. But very few molecules have currently crossed the safety criteria due to their various toxic side effects. In the present study, we have adopted a computational polypharmacological strategy and identified four novel molecules that can target all three AURKs. These molecules were further investigated for their binding stabilities at the ATP binding pocket using molecular dynamics based simulation studies. The molecules selected adopting a multipronged computational approach can be considered as potential AURKs inhibitors for cancer therapeutics.


Assuntos
Segregação de Cromossomos , Neoplasias , Aurora Quinase A/metabolismo , Aurora Quinase B/uso terapêutico , Aurora Quinases/uso terapêutico , Instabilidade Cromossômica , Citocinese , Humanos , Neoplasias/tratamento farmacológico
4.
Cell Mol Life Sci ; 78(24): 7967-7989, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34731254

RESUMO

Since the emergence of the first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), the viral genome has constantly undergone rapid mutations for better adaptation in the host system. These newer mutations have given rise to several lineages/ variants of the virus that have resulted in high transmission and virulence rates compared to the previously circulating variants. Owing to this, the overall caseload and related mortality have tremendously increased globally to > 233 million infections and > 4.7 million deaths as of Sept. 28th, 2021. SARS-CoV-2, Spike (S) protein binds to host cells by recognizing human angiotensin-converting enzyme 2 (hACE2) receptor. The viral S protein contains S1 and S2 domains that constitute the binding and fusion machinery, respectively. Structural analysis of viral S protein reveals that the virus undergoes conformational flexibility and dynamicity to interact with the hACE2 receptor. The SARS-CoV-2 variants and mutations might be associated with affecting the conformational plasticity of S protein, potentially linked to its altered affinity, infectivity, and immunogenicity. This review focuses on the current circulating variants of SARS-CoV-2 and the structure-function analysis of key S protein mutations linked with increased affinity, higher infectivity, enhanced transmission rates, and immune escape against this infection.


Assuntos
Evasão da Resposta Imune/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adaptação Fisiológica/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/transmissão , Genoma Viral/genética , Humanos , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Biol Inorg Chem ; 26(1): 149-159, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427997

RESUMO

Lactoperoxidase, a heme-containing glycoprotein, catalyzes the oxidation of thiocyanate by hydrogen peroxide into hypothiocyanite which acts as an antibacterial agent. The prosthetic heme moiety is attached to the protein through two ester linkages via Glu258 and Asp108. In lactoperoxidase, the substrate-binding site is formed on the distal heme side. To study the effect of physiologically important potassium ion on the structure and function of lactoperoxidase, the fresh protein samples were isolated from yak (Bos grunniens) colostrum and purified to homogeneity. The biochemical studies with potassium fluoride showed a significant reduction in the catalytic activity. Lactoperoxidase was crystallized using 200 mM ammonium nitrate and 20% PEG-3350 at pH 6.0. The crystals of LPO were soaked in the solution of potassium fluoride and used for the X-ray intensity data collection. Structure determination at 2.20 Å resolution revealed the presence of a potassium ion in the distal heme cavity. Structure determination further revealed that the propionic chain attached to pyrrole ring C of the heme moiety, was disordered into two components each having an occupancy of 0.5. One component occupied a position similar to the normally observed position of propionic chain while the second component was found in the distal heme cavity. The potassium ion in the distal heme cavity formed five coordinate bonds with two oxygen atoms of propionic moiety, Nε2 atom of His109 and two oxygen atoms of water molecules. The presence of potassium ion in the distal heme cavity hampered the catalytic activity of lactoperoxidase.


Assuntos
Lactoperoxidase/metabolismo , Potássio/metabolismo , Animais , Sítios de Ligação , Biocatálise , Cálcio/química , Cálcio/metabolismo , Bovinos , Colostro/enzimologia , Cristalografia por Raios X , Heme/química , Heme/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Lactoperoxidase/química , Potássio/química , Ligação Proteica
6.
Arch Biochem Biophys ; 701: 108786, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548211

RESUMO

DNA Gyrase is a type II topoisomerase that utilizes the energy of ATP hydrolysis for introducing negative supercoils in DNA. The protein comprises two subunits GyrA and GyrB that form a GyrA2GyrB2 heterotetramer. GyrB subunit contains the N-terminal domain (GBNTD) for ATPase activity and the C-terminal domain (GBCTD) for interaction with GyrA and DNA. Earlier structural studies have revealed three different conformational states for GBNTD during ATP hydrolysis defined as open, semi-open, and closed. Here we report, the three-dimensional structure of a new transient closed conformation of GBNTD from Salmonella Typhi (StGBNTD) at 1.94 Å resolution. Based on the structural analysis of this transient closed conformation, we propose the role of protein in the mechanism of ATP hydrolysis. We further explored the effect of pH on ATPase activity and structural stability of the GBNTD using CD and fluorescence spectroscopy at varying pH environment. Kinetic parameters obtained from the ATPase assay were correlated with its secondary and tertiary structure at their respective pH environment. The protein possessed maximum ATPase activity and structural stability at optimum pH 8. At acidic pH, a remarkable decrease in both enzymatic activity and structural stability was observed whereas at alkaline pH there was no significant change. The structural analysis of StGBNTD reveals the role of polar interactions in stabilizing the overall dimeric conformation of the protein.


Assuntos
Adenosina Trifosfatases/química , DNA Girase/química , Salmonella typhi/enzimologia , Adenosina Trifosfatases/genética , Cristalografia por Raios X , DNA Girase/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Domínios Proteicos , Salmonella typhi/genética
7.
J Biochem Mol Toxicol ; 35(7): e22785, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33860986

RESUMO

Azilsartan is found to be more potent than other angiotensin receptor blockers in reducing blood pressure. However, its effect on the heart following myocardial infarction remains to be established. For the first time, we investigated the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonistic and cardioprotective properties of azilsartan. Computational modeling studies of interactions between azilsartan and PPAR-γ revealed azilsartan as an agonist of PPAR-γ and showed the mechanism of azilsartan in cardioprotection. Our study compared the cardioprotective potential of telmisartan to that of azilsartan in a murine model of myocardial ischemia-reperfusion injury by comparing their antioxidant, ant apoptotic, anti-inflammatory, mitogen-activated protein kinase (MAPK)-modulating ability, and PPAR-γ agonistic activity. Male Wistar rats were grouped into four to receive vehicle (dimethyl sulfoxide [0.05%] 2 ml/kg) telmisartan (10 mg/kg p.o.), azilsartan (10 mg/kg p.o.) or azilsartan with specific PPAR-γ blocker, GW 9662 for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Telmisartan and azilsartan pretreatment significantly nearly normalized cardiac parameters and preserved structural changes. Both drugs inhibited oxidative burst, inflammation, as well as cell death by modulating apoptotic protein expression along with reduction in 4',6-diamidino-2-phenylindole/terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. An increment in pro-survival kinase ERK paralleled with a reduction in p38 and JNK was also revealed by MAPK pathway studies, after administration of these drugs. Interestingly, the aforementioned changes induced by both drugs were reversed by administration of the specific PPAR-γ antagonist, GW9662. However, we found that azilsartan upregulated PPAR-γ to a lesser extent as compared to telmisartan and the latter may be preferred in hypertensive patients at risk of myocardial infarction.


Assuntos
Benzimidazóis/farmacologia , Cardiotônicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica , Miocárdio , Oxidiazóis/farmacologia , Telmisartan/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar
8.
Mol Divers ; 25(3): 1439-1460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34159484

RESUMO

The accumulation of massive data in the plethora of Cheminformatics databases has made the role of big data and artificial intelligence (AI) indispensable in drug design. This has necessitated the development of newer algorithms and architectures to mine these databases and fulfil the specific needs of various drug discovery processes such as virtual drug screening, de novo molecule design and discovery in this big data era. The development of deep learning neural networks and their variants with the corresponding increase in chemical data has resulted in a paradigm shift in information mining pertaining to the chemical space. The present review summarizes the role of big data and AI techniques currently being implemented to satisfy the ever-increasing research demands in drug discovery pipelines.


Assuntos
Inteligência Artificial , Big Data , Descoberta de Drogas/métodos , Algoritmos , Bases de Dados Factuais , Aprendizado Profundo , Desenho de Fármacos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Fluxo de Trabalho
9.
Arch Biochem Biophys ; 694: 108572, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32926843

RESUMO

The methodology exploring the cardioprotective potential of the flavonoid Fisetin through its ability to modulate PPAR-γ was unraveled in the present study. Computational modelling through molecular docking based binding study of interactions between Fiestin and PPAR-γ revealed the potential role of Fisetin as an agonist of PPAR-γ. A murine model of cardiac ischemia-reperfusion injury was used to explore this further. Male Wistar Rats were randomly assigned to five groups. Fisetin (20 mg/kg; p. o) was administered for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Fisetin pretreatment upregulated the expression of PPAR-γ in heart tissue significantly Cardioprotection was assessed by measurement of hemodynamic parameters, infarct size, ELISA for oxidative stress, immunohistochemistry and TUNEL assay for apoptosis, and western blot analysis for MAPK proteins and inflammation. PPAR-γ activation by fisetin led to significantly reduced infarct size, suppression of oxidative stress, reduction of cardiac injury markers, alleviation of inflammation, and inhibition of apoptosis The MAPK-based molecular mechanism showed a rise in a key prosurvival kinase, ERK1/ERK2 and suppression of JNK and p38 proteins. The aforementioned beneficial findings of fisetin were reversed on the administration of a specific antagonist of PPAR-γ. In conclusion, through our experiments, we have proved that fisetin protects the heart against ischemia-reperfusion injury and the evident cardioprotection is PPAR-γ dependant. In conclusion, our study has revealed a prime mechanism involved in the cardioprotective effects of fisetin. Hence, Fisetin may be evaluated in further clinical studies as a cardioprotective agent in patients undergoing reperfusion interventions.


Assuntos
Cardiotônicos/uso terapêutico , Flavonoides/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , PPAR gama/agonistas , Animais , Cardiotônicos/metabolismo , Flavonoides/metabolismo , Flavonóis , Coração/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Ratos Wistar , Regulação para Cima
10.
Am J Med Genet A ; 182(5): 1190-1200, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32222031

RESUMO

Glycogen storage disease type III (GSD III) is a rare autosomal recessive inborn error of glycogen degradation pathway due to deficiency or reduced activity of glycogen debranching enzyme (GDE) that results in accumulation of abnormal glycogen in the liver, muscle, and heart. The cardinal hallmarks are hepatomegaly, fasting hypoglycemia, seizures, growth retardation, progressive skeletal myopathy, and cardiomyopathy in few. To date, 258 mutations in amyloglucosidase (AGL) gene have been identified worldwide. However, the mutation spectrum in the Asian Indian region is yet to be well characterized. We investigated 24 patients of Asian origin from 21 unrelated families with a provisional diagnosis of GSD III based on clinical and biochemical criteria. Molecular diagnosis was assessed by bidirectional sequencing and the impact of novel missense variants on the tertiary (three-dimensional) structure of GDE was evaluated by molecular modeling approach. Eighteen different pathogenic variants were identified, out of which 78% were novel. Novel variants included five nonsense, three small duplications and two small deletions, a splice site variant, and three missense variants. Variations in Exons 4, 14, 19, 24, 27, and 33 accounted for 61% of the total pathogenic variants identified and Allele p.Gly798Alafs*3 showed a high allele frequency of 11%. Molecular modeling study of novel pathogenic missense variants indicated the probable underlying molecular mechanism of adverse impact of variations on the structure and catalytic function of human GDE. Our study is the first large study on GSD III from the Asian subcontinent, which further expands the mutation spectrum of AGL.


Assuntos
Predisposição Genética para Doença , Glucana 1,4-alfa-Glucosidase/genética , Doença de Depósito de Glicogênio Tipo III/genética , Fígado/enzimologia , Alelos , Povo Asiático/genética , Criança , Pré-Escolar , Éxons/genética , Feminino , Frequência do Gene/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Doença de Depósito de Glicogênio Tipo III/epidemiologia , Doença de Depósito de Glicogênio Tipo III/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Mutação/genética
11.
Bioorg Chem ; 104: 104244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32966903

RESUMO

The emerged resistance in Typhoidal Salmonella has limited the treatment options for typhoid fever. In this scenario, there is a need to find alternate treatment modalities against this pathogen. Amongst the therapeutic agents currently being used to treat enteric fever, quinolones have enjoyed considerable success since past three decades. These drugs act upon DNA gyrase and the acquired resistance is due to mutations at Ser83 and Asp87 of gyrase A subunit. In the present study DNA gyrase enzyme was targeted to seek out potential new inhibitors which are not affected by these mutations. Molecular modelling and docking studies were performed in Schrödinger's molecular modelling software. Homology model of DNA gyrase-DNA complex was built using templates 1AB4 and 3LTN. Molecular dynamic simulations were performed in SPC solvent for 100 ns. Total 17,900,742 drug like molecules were downloaded from ZINC library of chemical compounds. The Glide XP score of the compounds ranged from -5.285 to -13.692. All the ligands bound at the four base pair staggered nick in the DNA binding groove of DNA gyrase enzyme with their aromatic rings intercalating between the bases of two successive nucleotides stabilized by π - π stacking interactions. The binding pocket of DNA gyrase B comprising conserved residues Lys 447, Gly 448, Lys 449, Ile 450, Leu 451, Gln 465 and Val 467 interacts with the ligand molecules through van der Waals interactions. The MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration) and IC50 of the tested compounds ranged from 500 to 125 mg/L, 750 to 500 mg/L and 100 to 12.5 mg/L, respectively. The selected hits bind to quinolone binding pocket, but their mode of binding and conformation is different to fluoroquinolones, and hence, their binding is not affected by mutations at Ser83 or Asp87 positions. These lead compounds can be further explored as a scaffold to design inhibitors against DNA gyrase to bypass quinolone resistance.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Descoberta de Drogas , Salmonella typhi/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salmonella typhi/enzimologia , Relação Estrutura-Atividade
12.
Proteins ; 87(2): 99-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30007053

RESUMO

Ribosome inactivating protein (RIP) catalyzes the cleavage of glycosidic bond formed between adenine and ribose sugar of ribosomal RNA to inactivate ribosomes. Previous structural studies have shown that RNA bases, adenine, guanine, and cytosine tend to bind to RIP in the substrate binding site. However, the mode of binding of uracil with RIP was not yet known. Here, we report crystal structures of two complexes of type 1 RIP from Momordica balsamina (MbRIP1) with base, uracil and nucleoside, uridine. The binding studies of MbRIP1 with uracil and uridine as estimated using fluorescence spectroscopy showed that the equilibrium dissociation constants (KD ) were 1.2 × 10-6 M and 1.4 × 10-7 M respectively. The corresponding values obtained using surface plasmon resonance (SPR) were found to be 1.4 × 10-6 M and 1.1 × 10-7 M, respectively. Structures of the complexes of MbRIP1 with uracil (Structure-1) and uridine (Structure-2) were determined at 1.70 and 1.98 Å resolutions respectively. Structure-1 showed that uracil bound to MbRIP1 at the substrate binding site but its mode of binding was significantly different from those of adenine, guanine and cytosine. However, the mode of binding of uridine was found to be similar to those of cytidine. As a result of binding of uracil to MbRIP1 at the substrate binding site, three water molecules were expelled while eight water molecules were expelled when uridine bound to MbRIP1.


Assuntos
Momordica/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Uracila/química , Uridina/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Ligação Proteica , Conformação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Ribossomos/química , Ribossomos/metabolismo , Ressonância de Plasmônio de Superfície , Uracila/metabolismo , Uracila/farmacologia , Uridina/metabolismo , Uridina/farmacologia
13.
BMC Med Genet ; 20(1): 164, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655562

RESUMO

BACKGROUND: Mutations in TSC1 or TSC2 gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by the formation of non-malignant hamartomas in multiple vital organs. TSC1 and TSC2 gene products form TSC heterodimer that senses specific cell growth conditions to control mTORC1 signalling. METHODS: In the present study 98 TSC patients were tested for variants in TSC1 and TSC2 genes and 14 novel missense variations were identified. The pathogenecity of these novel variations was determined by applying different bioinformatics tools involving computer aided protein modeling. RESULTS: Protein modelling could be done only for ten variants which were within the functional part of the protein. Homology modeling is the most reliable method for structure prediction of a protein. Since no sequence homology structure was available for the tuberin protein, three dimensional structure was modeled by a combination of homology modeling and the predictive fold recognition and threading method using Phyre2 threading server. The best template structures for model building of the TSC1 interacting domain, tuberin domain and GAP domain are the crystal structures of clathrin adaptor core protein, Rap1GAP catalytic domain and Ser/Thr kinase Tor protein respectively. CONCLUSIONS: In this study, an attempt has been made to assess the impact of each novel missense variant based on their TSC1-TSC2 hydrophobic interactions and its effect on protein function.


Assuntos
Mutação de Sentido Incorreto , Proteína 2 do Complexo Esclerose Tuberosa/genética , Esclerose Tuberosa/genética , Adolescente , Criança , Pré-Escolar , Simulação por Computador , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactente , Recém-Nascido , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa/genética
14.
Indian J Med Res ; 149(3): 404-411, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31249207

RESUMO

Background & objectives: : Azithromycin has been in use as an alternate treatment option for enteric fever even when the guidelines on the susceptibility testing were not available. There is lack of data on susceptibility and mechanisms of resistance of azithromycin in Salmonella Typhi and S. Paratyphi A. The aim of the present study was to determine the azithromycin susceptibility and resistance mechanisms in typhoidal salmonellae isolates archived in a tertiary care centre in north India for a period of 25 years. Methods: : Azithromycin susceptibility was determined in 602 isolates of S. Typhi (469) and S. Paratyphi A (133) available as archived collection isolated during 1993 to 2016, by disc diffusion and E-test method.PCR was done for ereA, ermA, ermB, ermC, mefA, mphA and msrA genes from plasmid and genomic DNA and sequencing was done to detect mutations in acrR, rplD and rplV genes. Results: : Azithromycin susceptibility was seen in 437/469 [93.2%; 95% confidence interval (CI), 90.5 to 95.1%] isolates of S. Typhi. Amongst 133 isolates of S. Paratyphi A studied, minimum inhibitory concentration (MIC) of ≤16 mg/l was found in 102 (76.7%; 95% CI, 68.8 to 83.0). MIC value ranged between 1.5 and 32 mg/l with an increasing trend in MIC50and MIC90with time. Mutations were found in acrR in one and rplV in two isolates of S. Typhi. No acquired mechanism for macrolide resistance was found. Interpretation & conclusions: : Azithromycin could be considered as a promising agent against typhoid fever on the basis of MIC distribution in India. However, due to emergence of resistance in some parts, there is a need for continuous surveillance of antimicrobial susceptibility and resistance mechanisms. There is also a need to determine the breakpoints for S. Paratyphi A.


Assuntos
Azitromicina/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Febre Tifoide/tratamento farmacológico , Azitromicina/efeitos adversos , Proteínas de Bactérias/classificação , Humanos , Índia/epidemiologia , Mutação/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Salmonella paratyphi A/efeitos dos fármacos , Salmonella paratyphi A/genética , Salmonella paratyphi A/patogenicidade , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Febre Tifoide/epidemiologia , Febre Tifoide/genética , Febre Tifoide/microbiologia
15.
Biochem J ; 475(3): 547-560, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29301982

RESUMO

Peptidyl-tRNA hydrolase (Pth) catalyzes the breakdown of peptidyl-tRNA into peptide and tRNA components. Pth from Acinetobacter baumannii (AbPth) was cloned, expressed, purified and crystallized in a native unbound (AbPth-N) state and in a bound state with the phosphate ion and cytosine arabinoside (cytarabine) (AbPth-C). Structures of AbPth-N and AbPth-C were determined at 1.36 and 1.10 Šresolutions, respectively. The structure of AbPth-N showed that the active site is filled with water molecules. In the structure of AbPth-C, a phosphate ion is present in the active site, while cytarabine is bound in a cleft which is located away from the catalytic site. The cytarabine-binding site is formed with residues: Gln19, Trp27, Glu30, Gln31, Lys152, Gln158 and Asp162. In the structure of AbPth-N, the side chains of two active-site residues, Asn70 and Asn116, were observed in two conformations. Upon binding of the phosphate ion in the active site, the side chains of both residues were ordered to single conformations. Since Trp27 is present at the cytarabine-binding site, the fluorescence studies were carried out which gave a dissociation constant (KD) of 3.3 ± 0.8 × 10-7 M for cytarabine. The binding studies using surface plasmon resonance gave a KD value of 3.7 ± 0.7 × 10-7 M. The bacterial inhibition studies using the agar diffusion method and the biofilm inhibition assay established the strong antimicrobial potential of cytarabine. It also indicated that cytarabine inhibited Gram-negative bacteria more profoundly when compared with Gram-positive bacteria in a dose-dependent manner. Cytarabine was also effective against the drug-resistant bacteria both alone as well as in combination with other antibiotics.


Assuntos
Acinetobacter baumannii/enzimologia , Biofilmes/efeitos dos fármacos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Hidrolases de Éster Carboxílico/farmacologia , Catálise , Domínio Catalítico , Cristalografia por Raios X , Citarabina/química , Escherichia coli/genética , Domínios Proteicos , RNA de Transferência/química , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Especificidade por Substrato , Propriedades de Superfície
16.
Arch Biochem Biophys ; 644: 72-80, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524427

RESUMO

Secretory signalling glycoprotein (SPX-40) from mammary gland is highly expressed during involution. This protein is involved in a programmed cell death during tissue remodelling which occurs at the end of lactation. SPX-40 was isolated and purified from buffalo (SPB-40) from the samples obtained during involution. One solution of SPB-40 was made by dissolving it in buffer containing 25 mM Tris-HCl and 50 mM NaCl at pH 8.0. Another solution was made by adding 25% ethanol to the above solution. The biological effects of SPB-40 dissolved in above two solutions were evaluated on MCF-7 breast cancer cell lines. Free SPB-40 indicated significant pro-apoptotic effects while ethanol exposed SPB-40 showed considerably reduced effects on the apoptosis. SPB-40 was crystallized in the native state. The crystals of SPB-40 were soaked in four separate solutions containing 25% acetone, 25% ethanol, 25% butanol and 25% MPD. Four separate data sets were collected and their structures were determined at high resolutions. In all the four structures, the molecules of acetone, ethanol, butanol and MPD respectively were observed in the hydrophobic binding pocket of SPB-40. As a result of which, the conformation of Trp78 was altered thus blocking the binding site in SPB-40 leading to the loss of activity.


Assuntos
Apoptose/efeitos dos fármacos , Glicoproteínas/farmacologia , Glândulas Mamárias Animais/química , Transdução de Sinais/efeitos dos fármacos , Animais , Búfalos , Cristalografia por Raios X , Feminino , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Humanos , Lactação/metabolismo , Células MCF-7 , Glândulas Mamárias Animais/metabolismo , Relação Estrutura-Atividade
17.
Adv Exp Med Biol ; 1052: 39-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785479

RESUMO

Recent advancements in sequencing technologies have decreased both time span and cost for sequencing the whole bacterial genome. High-throughput Next-Generation Sequencing (NGS) technology has led to the generation of enormous data concerning microbial populations publically available across various repositories. As a consequence, it has become possible to study and compare the genomes of different bacterial strains within a species or genus in terms of evolution, ecology and diversity. Studying the pan-genome provides insights into deciphering microevolution, global composition and diversity in virulence and pathogenesis of a species. It can also assist in identifying drug targets and proposing vaccine candidates. The effective analysis of these large genome datasets necessitates the development of robust tools. Current methods to develop pan-genome do not support direct input of raw reads from the sequencer machine but require preprocessing of reads as an assembled protein/gene sequence file or the binary matrix of orthologous genes/proteins. We have designed an easy-to-use integrated pipeline, NGSPanPipe, which can directly identify the pan-genome from short reads. The output from the pipeline is compatible with other pan-genome analysis tools. We evaluated our pipeline with other methods for developing pan-genome, i.e. reference-based assembly and de novo assembly using simulated reads of Mycobacterium tuberculosis. The single script pipeline (pipeline.pl) is applicable for all bacterial strains. It integrates multiple in-house Perl scripts and is freely accessible from https://github.com/Biomedinformatics/NGSPanPipe .


Assuntos
Bactérias/genética , Genoma Bacteriano , Bactérias/classificação , Bactérias/isolamento & purificação , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala
18.
Proteins ; 85(10): 1882-1890, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653416

RESUMO

Lactoperoxidase (LPO) belongs to mammalian heme peroxidase superfamily, which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO), and thyroid peroxidase (TPO). LPO catalyzes the oxidation of a number of substrates including thiocyanate while TPO catalyzes the biosynthesis of thyroid hormones. LPO is also been shown to catalyze the biosynthesis of thyroid hormones indicating similar functional and structural properties. The binding studies showed that 2-mercaptoimidazole (MZY) bound to LPO with a dissociation constant of 0.63 µM. The inhibition studies showed that the value of IC50 was 17 µM. The crystal structure of the complex of LPO with MZY showed that MZY bound to LPO in the substrate-binding site on the distal heme side. MZY was oriented in the substrate-binding site in such a way that the sulfur atom is at a distance of 2.58 Å from the heme iron. Previously, a similar compound, 3-amino-1,2,4-triazole (amitrole) was also shown to bind to LPO in the substrate-binding site on the distal heme side. The amino nitrogen atom of amitrole occupied the same position as that of sulfur atom in the present structure indicating a similar mode of binding. Recently, the structure of the complex of LPO with a potent antithyroid drug, 1-methylimidazole-2-thiol (methimazole, MMZ) was also determined. It showed that MMZ bound to LPO in the substrate-binding site on the distal heme side with 2 orientations. The position of methyl group was same in the 2 orientations while the positions of sulfur atom differed indicating a higher preference for a methyl group.


Assuntos
Etilenotioureia/análogos & derivados , Lactoperoxidase/química , Hormônios Tireóideos/química , Sítios de Ligação , Cristalografia por Raios X , Etilenotioureia/química , Etilenotioureia/metabolismo , Heme/química , Heme/metabolismo , Humanos , Lactoperoxidase/metabolismo , Metimazol/química , Metimazol/uso terapêutico , Conformação Proteica , Especificidade por Substrato , Enxofre , Glândula Tireoide/química , Glândula Tireoide/enzimologia , Hormônios Tireóideos/biossíntese
19.
J Cell Physiol ; 232(7): 1845-1861, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925208

RESUMO

Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Comunicação Autócrina , Movimento Celular , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Transdução de Sinais , Animais , Células Endoteliais , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Modelos Biológicos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
20.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1395-1405, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28844736

RESUMO

Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp to support DNA replication and repair. The structure of PCNA from Leishmania donovani (LdPCNA) has been determined at 2.73Å resolution. Structure consists of six crystallographically independent molecules which form two trimeric rings. The pore diameter of the individual trimeric ring is of the order of 37Å. The two rings are stacked through their front to front faces. In order to gain a stable packing, the rings are rotated by 42° about the pore axis and shifted by 7Å and tilted by 16° along the perpendicular direction to pore axis. This form of stacking reduced the effective diameter of the pore to 32Å. The sequence of LdPCNA consists of a long segment of 41 amino acid residues (186-Gly-Val-Ser-Asp-Arg-Ser-Thr-Lys-Ser-Glu-Val-Lys-Ala-Glu-Val-Lys-Ala-Glu-Ala-Arg-Asp-Asp-Asp-Glu-Glu-Pro-Leu-Ser-Arg-Lys-Tyr-Gly-Lys-Ala-Asp-Ser-Ser-Ala-Asn-Ala-Ile-226) whereas the corresponding segments in other PCNAs contain only eight residues corresponding to 186-Gly-Val-Ser-Asp-Arg------224-Asn-Ala-Ile-226. The enhanced length of this segment in LdPCNA may influence its mode of interaction with DNA and other proteins. The dissociation constants obtained using real time binding studies with surface plasmon resonance (SPR) for two peptides, Lys-Arg-Arg-Gln-Thr-Ser-Met-Thr-Asp-Phe-Tyr-His (P1) from human cyclin-dependent kinase inhibitor-1(CKI-1) and Lys-Thr-Gln-Gly-Arg-Leu-Asp-Ser-Phe-Phe-Thr-Val (P2) from flap endonuclease 1 (Fen-1) as well as with two small molecule inhibitors, (S)-4-(4-(2-amino-3-hydroxypropyl)-2, 6-diiodophenoxy) phenol hydrochloride (ADPH) and N-(3-methylthiophene-2-carboxylicacid)-N'-((3-hydroxy-2-naphthalenyl) methylene) hydrazide (MCMH) are 0.29±0.09µM, 0.37±0.08µM, 0.35±0.09µM and 1.20±0.08µM respectively. The corresponding values obtained using fluorescence spectroscopic methods were 0.22±0.06µM, 0.68±0.07µM, 0.44±0.07µM and 0.75±0.05µM respectively.


Assuntos
DNA de Protozoário/química , Leishmania donovani/química , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Inibidor de Quinase Dependente de Ciclina p21/química , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleases Flap/química , Expressão Gênica , Leishmania donovani/metabolismo , Modelos Moleculares , Fenóis/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa