Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Exp Bot ; 74(6): 2029-2046, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36610799

RESUMO

Rust infection results in decreases in photosynthesis and stress volatile emissions, but how these changes vary among host species has not been studied. We demonstrated that the impact of the obligate biotrophic fungus, Puccinia coronata f. sp. avenae, on foliage physiological processes is stronger in the primary host, Avena sativa (cultivated oat), than in the alternate host, Rhamnus frangula (alder buckthorn). Photosynthesis decreased with increasing percentage of damaged leaf area (DA) in both species, but reductions were greater in A. sativa. In A. sativa, photosynthetic reductions resulted from reductions in stomatal conductance and photosynthetic capacity; in R. frangula, reductions were due to reduced capacity. Infection reduced photosynthetic biomass and key nutrients in A. sativa, but not in R. frangula. In A. sativa, stress-elicited emissions (methyl jasmonate, green leaf volatiles, long-chain saturated aldehydes, mono- and sesquiterpenes, benzenoids, and carotenoid breakdown products) increased with increasing DA from 0% to 40%, but decreased with further increases in DA. In R. frangula, volatile emissions were slightly elicited but, surprisingly, constitutive isoprene emissions were enhanced. Different hosts had characteristic volatile fingerprints, indicating differential activation of biochemical pathways. Fungal-elicited reductions in photosynthesis scale uniformly with stress severity. In the sensitive host, biphasic scaling of volatiles indicates that heavy spread of chlorosis/necrosis leads to an overall cessation of physiological functioning.


Assuntos
Basidiomycota , Rhamnus , Avena , Fotossíntese , Basidiomycota/fisiologia
2.
J Exp Bot ; 74(3): 889-908, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433902

RESUMO

Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.


Assuntos
Reguladores de Crescimento de Plantas , Selaginellaceae , Reguladores de Crescimento de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
3.
Oecologia ; 199(1): 53-68, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35471619

RESUMO

Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.


Assuntos
Hemípteros , Compostos Orgânicos Voláteis , Animais , Resposta ao Choque Térmico/fisiologia , Hemípteros/metabolismo , Fotossíntese/fisiologia , Estresse Fisiológico
4.
Plant Cell Environ ; 44(7): 2365-2385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32583881

RESUMO

The mechanism of heat priming, triggering alteration of secondary metabolite pathway fluxes and pools to enhance heat tolerance is not well understood. Achillea millefolium is an important medicinal herbal plant, rich in terpenoids and phenolics. In this study, the potential of heat priming treatment (35°C for 1 hr) to enhance tolerance of Achillea plants upon subsequent heat shock (45°C for 5 min) stress was investigated through recovery (0.5-72 hr). The priming treatment itself had minor impacts on photosynthesis, led to moderate increases in the emission of lipoxygenase (LOX) pathway volatiles and isoprene, and to major elicitation of monoterpene and benzaldehyde emissions in late stages of recovery. Upon subsequent heat shock, in primed plants, the rise in LOX and reduction in photosynthetic rate (A) was much less, stomatal conductance (gs ) was initially enhanced, terpene emissions were greater and recovery of A occurred faster, indicating enhanced heat tolerance. Additionally, primed plants accumulated higher contents of total phenolics and condensed tannins at the end of the recovery. These results collectively indicate that heat priming improved photosynthesis upon subsequent heat shock by enhancing gs and synthesis of volatile and non-volatile secondary compounds with antioxidative characteristics, thereby maintaining the integrity of leaf membranes under stress.


Assuntos
Achillea/fisiologia , Fenóis/metabolismo , Terpenos/metabolismo , Termotolerância/fisiologia , Achillea/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Flavonoides/metabolismo , Resposta ao Choque Térmico/fisiologia , Lipoxigenase/metabolismo , Pentosefosfatos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Proantocianidinas/metabolismo , Metabolismo Secundário , Fosfatos Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo
5.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070994

RESUMO

Ozone (O3) entry into plant leaves depends on atmospheric O3 concentration, exposure time and openness of stomata. O3 negatively impacts photosynthesis rate (A) and might induce the release of reactive volatile organic compounds (VOCs) that can quench O3, and thereby partly ameliorate O3 stress. Water stress reduces stomatal conductance (gs) and O3 uptake and can affect VOC release and O3 quenching by VOC, but the interactive effects of O3 exposure and water stress, as possibly mediated by VOC, are poorly understood. Well-watered (WW) and water-stressed (WS) Brassica nigra plants were exposed to 250 and 550 ppb O3 for 1 h, and O3 uptake rates, photosynthetic characteristics and VOC emissions were measured through 22 h recovery. The highest O3 uptake was observed in WW plants exposed to 550 ppb O3 with the greatest reduction and poorest recovery of gs and A, and elicitation of lipoxygenase (LOX) pathway volatiles 10 min-1.5 h after exposure indicating cellular damage. Ozone uptake was similar in 250 ppb WW and 550 ppb WS plants and, in both treatments, O3-dependent reduction in photosynthetic characteristics was moderate and fully reversible, and VOC emissions were little affected. Water stress alone did not affect the total amount and composition of VOC emissions. The results indicate that drought ameliorated O3 stress by reducing O3 uptake through stomatal closure and the two stresses operated in an antagonistic manner in B. nigra.


Assuntos
Mostardeira/metabolismo , Fotossíntese/fisiologia , Estresse Fisiológico/fisiologia , Transporte Biológico/fisiologia , Desidratação/metabolismo , Desidratação/fisiopatologia , Secas , Oxigênio/química , Oxigênio/metabolismo , Ozônio/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Compostos Orgânicos Voláteis/química
6.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946933

RESUMO

Leaf mechanical wounding triggers a rapid release-within minutes-of a blend of volatile organic compounds. A wounding-induced VOC blend is mainly composed of oxygenated ubiquitous stress volatiles such as methanol and volatile products of lipoxygenase (LOX) pathway (mainly C5 and C6 alcohols and aldehydes and their derivatives), but also includes multiple minor VOCs that collectively act as infochemicals, inducing defences in non-damaged plant leaves and neighbouring plants and attracting herbivore enemies. At present, the interspecific variability of the rate of induction and magnitude of wounding-induced emissions and the extent to which plant structural traits and physiological activity alter these emissions are poorly known. Particularly scarce is information on the induced emissions in tropical agricultural plant species, despite their economic importance and large area of cultivation at regional and global scales. We chose five tropical crops with varying photosynthetic activity and leaf structural characteristics-Abelmoschus esculentus, Amaranthus cruentus, Amaranthus hybridus, Solanum aethiopicum, and Telfairia occidentalis-to characterize the kinetics and magnitude of wounding-induced emissions, hypothesizing that the induced emission response is greater and faster in physiologically more active species with greater photosynthetic activity than in less active species. Rapid highly repeatable leaf wounds (12 mm cuts) were generated by a within-leaf-chamber cutting knife. Wounding-induced VOC emissions were measured continuously with a proton-transfer reaction time-of-flight mass spectrometer and gas-chromatography mass spectrometry was used to separate isomers. Twenty-three ion VOCs and twelve terpenoid molecule structures were identified, whereas ubiquitous stress volatiles methanol (on average 40% of total emissions), hexenal (24%), and acetaldehyde (11%) were the main compounds across the species. Emissions of low-weight oxygenated compounds (LOC, 70% of total) and LOX products (29%) were positively correlated across species, but minor VOC components, monoterpenoids and benzenoids, were negatively correlated with LOC and LOX, indicating a reverse relationship between signal specificity and strength. There was a large interspecific variability in the rate of induction and emission magnitude, but the hypothesis of a stronger emission response in physiologically more active species was only partly supported. In addition, the overall emission levels were somewhat lower with different emission blend compared to the data reported for wild species, as well as different shares for the VOCs in the blend. The study demonstrates that wounding-dependent emissions from tropical agricultural crops can significantly contribute to atmospheric volatiles, and these emissions cannot be predicted based on current evidence of wild plant model systems.


Assuntos
Plantas/química , Plantas/metabolismo , Compostos Orgânicos Voláteis/química , Ferimentos e Lesões/metabolismo , Biodiversidade , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria , Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas/anatomia & histologia , Característica Quantitativa Herdável , Compostos Orgânicos Voláteis/metabolismo
7.
BMC Genomics ; 16: 837, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493993

RESUMO

BACKGROUND: To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS: A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS: We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS: Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.


Assuntos
Arabidopsis/genética , Morte Celular/genética , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/metabolismo , Catalase/biossíntese , Morte Celular/efeitos dos fármacos , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ácidos Indolacéticos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
8.
Plant Physiol Biochem ; 196: 567-579, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774912

RESUMO

Climate change enhances the frequency of heatwaves that negatively affect photosynthesis and can alter constitutive volatile emissions and elicit emissions of stress volatiles, but how pre-exposure to mildly warmer temperatures affects plant physiological responses to subsequent severe heat episodes remains unclear, especially for aromatic plants with high and complex volatile defenses. We studied the impact of heat shock (45 °C/5 min) applied alone and after exposure to moderate heat stress (35 °C/1 h, priming) on foliage photosynthesis and volatile emissions in the aromatic plant Origanum vulgare through 72 h recovery period. Heat stress decreased photosynthesis rates and stomatal conductance, whereas the reductions in photosynthesis were primarily due to non-stomatal factors. In non-primed plants, heat shock-induced reductions in photosynthetic activity were the greatest, but photosynthetic activity completely recovered by the end of the experiment. In primed plants, a certain inhibition of photosynthetic activity remained, suggesting a sustained priming effect. Heat shock enhanced the emissions of volatiles including lipoxygenase pathway volatiles, long-chained fatty acid-derived compounds, mono- and sesquiterpenes, geranylgeranyl diphosphate pathway volatiles, and benzenoids, whereas different heat treatments resulted in unique emission blends. In non-primed plants, stress-elicited emissions recovered at 72 h. In primed plants, volatile emissions were multiphasic, the first phase, between 0.5 and 10 h, reflected the primary stress response, whereas the secondary rise, between 24 and 72 h, indicated activations of different defense metabolic pathways. Our results demonstrate that exposure to mild heat leads to a sustained physiological stress memory that enhances plant resistance to subsequent severe heat stress episodes.


Assuntos
Origanum , Compostos Orgânicos Voláteis , Resposta ao Choque Térmico , Estresse Fisiológico , Fotossíntese , Redes e Vias Metabólicas , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/metabolismo
9.
Tree Physiol ; 38(10): 1513-1525, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931321

RESUMO

Methyl salicylate (MeSA) is a long-distance signal transduction chemical that plays an important role in plant responses to abiotic stress and herbivore and pathogen attacks. However, it is unclear how photosynthesis and elicitation of plant volatile organic compounds (VOC) from different metabolic pathways respond to the dose of MeSA. We applied different MeSA concentrations (0-50 mM) to study how exogenous MeSA alters VOC profiles of silver birch (Betula pendula Roth) leaves from application through recovery (0.5-23 h). Methyl salicylate application significantly reduced net assimilation rate in 10 mM and 20 mM MeSA-treated plants. No significant effects of MeSA were observed on the stomatal conductance at any MeSA concentration. Methyl salicylate elicited emissions of benzenoids (BZ), monoterpenes (MT) and fatty acid derived compounds (LOX products). Emission rates of BZ were positively, but emission rates of MT were negatively correlated with MeSA concentration. Total emission of LOX products was not influenced by MeSA concentration. Emission rate of MT was negatively correlated with BZ and the share of MT in the total emission blend decreased and the share of BZ increased with increasing MeSA concentration. Although the share of LOX products was similar across MeSA treatments, some LOX products responded differently to MeSA concentration, ultimately resulting in unique VOC blends. Overall, this study demonstrates inverse responses of MT and BZ to different MeSA doses such that plant defense mechanisms induced by lower MeSA doses mainly lead to enhanced MT synthesis, whereas greater MeSA doses trigger BZ-related defense mechanisms. Our results will contribute to improving the understanding of birch defenses induced upon regular herbivore attacks and pathogen infections in boreal forests.


Assuntos
Betula/metabolismo , Fotossíntese , Salicilatos/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Betula/efeitos dos fármacos , Vias Biossintéticas , Relação Dose-Resposta a Droga , Folhas de Planta/metabolismo , Ácido Chiquímico/metabolismo , Terpenos/metabolismo
10.
PLoS One ; 12(1): e0170532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107453

RESUMO

Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.


Assuntos
Arabidopsis/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Envelhecimento/fisiologia , Arabidopsis/genética , Morte Celular/genética , Morte Celular/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Marcadores Genéticos/genética , Mutação/genética , Mutação/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa