Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3233-3239, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804156

RESUMO

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a powerful tool to visualize the distribution of components, and it has been used to analyze drug release from tablets. In this work, ATR-FTIR spectroscopic imaging was applied for observing the dissolution of molecular crystals from tablet compacts. The IR spectra provided chemically specific information about the transformation of crystal structures during the dissolution experiments. Theophylline (TPL) anhydrate and its cocrystals were used as model systems of molecular crystals. The IR spectra during the dissolution of TPL revealed information about the crystal structure of TPL, which transformed from anhydrate to monohydrate in water. During a dissolution test of a model cocrystal system, it was suggested that an active pharmaceutical ingredient (API) and a coformer were dissolved in water simultaneously. The IR spectra that were acquired during the dissolution of a cocrystal tablet showed new spectral bands attributed to the API after 5 min. This suggested that the precipitation of API was observed during the dissolution experiment. Measurements from ATR-FTIR spectroscopic imaging can visualize the drug release from the tablet and determine the transformation of molecular crystals during their dissolution. These results will have an impact on clarifying the dissolution mechanism of molecular crystals.


Assuntos
Cristalização , Solubilidade , Comprimidos , Teofilina , Teofilina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos/química , Cristalização/métodos , Liberação Controlada de Fármacos , Química Farmacêutica/métodos
2.
Langmuir ; 40(11): 5858-5868, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445553

RESUMO

Throughout bioprocessing, transportation, and storage, therapeutic monoclonal antibodies (mAbs) experience stress conditions that may cause protein unfolding and/or chemical modifications. Such structural changes may lead to the formation of aggregates, which reduce mAb potency and may cause harmful immunogenic responses in patients. Therefore, aggregates need to be detected and removed or ideally prevented from forming. Air-liquid interfaces, which arise during various stages of bioprocessing, are one of the stress factors causing mAb aggregation. In this study, the behavior of an immunoglobulin G (IgG) at the air-liquid interface was investigated under flow using macro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. This chemically specific imaging technique allows observation of adsorption of IgG to the air-liquid interface and detection of associated secondary structural changes. Chemical images revealed that IgG rapidly accumulated around an injected air bubble under flow at 45 °C; however, no such increase was observed at 25 °C. Analysis of the second derivative spectra of IgG at the air-liquid interface revealed changes in the protein secondary structure associated with increased intermolecular ß-sheet content, indicative of aggregated IgG. The addition of 0.01% w/v polysorbate 80 (PS80) reduced the amount of IgG at the air-liquid interface in a static setup at 30 °C; however, this protective effect was lost at 45 °C. These results suggest that the presence of air-liquid interfaces under flow may be detrimental to mAb stability at elevated temperatures and demonstrate the power of ATR-FTIR spectroscopic imaging for studying the structural integrity of mAbs under bioprocessing conditions.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Humanos , Anticorpos Monoclonais/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estrutura Secundária de Proteína , Imunoglobulina G/química , Desdobramento de Proteína , Proteínas Mutadas de Ataxia Telangiectasia
3.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375260

RESUMO

One of the major challenges in the development of effective pharmaceutical formulations for oral administration is the poor solubility of active pharmaceutical ingredients. For this reason, the dissolution process and drug release from solid oral dosage forms, such as tablets, is usually thoroughly studied in order to understand the dissolution behaviour under various conditions and optimize the formulation accordingly. Standard dissolution tests used in the pharmaceutical industry provide information on the amount of drug released over time; however, these do not allow for a detailed analysis of the underlying chemical and physical mechanisms of tablet dissolution. FTIR spectroscopic imaging, by contrast, does offer the ability to study these processes with high spatial and chemical specificity. As such, the method allows us to see the chemical and physical processes which occur inside the tablet as it dissolves. In this review, the power of ATR-FTIR spectroscopic imaging is demonstrated by presenting a number of successful applications of this chemical imaging technique to dissolution and drug release studies for a range of different pharmaceutical formulations and study conditions. Understanding these processes is essential for the development of effective oral dosage forms and optimization of pharmaceutical formulations.


Assuntos
Diagnóstico por Imagem , Liberação Controlada de Fármacos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos/química
4.
Anal Chem ; 94(45): 15703-15710, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318727

RESUMO

Monoclonal antibodies (mAbs) are used extensively as biotherapeutics for chronic and acute conditions. Production of mAbs is lengthy and expensive, with protein A affinity capture the most costly step, due both to the nature of the resin and its marked reduction in binding capacity with repeated use. Our previous studies using in situ ATR-FTIR spectroscopy indicated that loss in protein A binding capacity is not the result of leaching or degradation of protein A ligand, suggesting fouling is the principal cause. Here we explore binding behavior and resin capacity loss using Raman spectroscopy. Our data reveal a distinct Raman spectral fingerprint for mAb bound to the protein A ligand of MabSelect SuRe. The results show that the drop in static binding capacity (SBC) previously observed for used protein A resin is discernible by Raman spectroscopy in combination with partial least-squares regression. The SBC is lowest (35.76 mg mL-1) for used inlet resin compared to used outlet (40.17 mg mL-1) and unused resin samples (70.35 mg mL-1). Depth profiling by Raman spectroscopy indicates that at below saturating concentrations (∼18 mg mL-1), binding of mAb is not homogeneous through used resin beads with protein binding preferentially to the outer regions of the bead, in contrast to fully homogeneous distribution through unused control MabSelect SuRe resin beads. Analysis of the Raman spectra indicates that one foulant is irreversibly bound mAb. The presence of irreversibly bound mAb and host cell proteins was confirmed by mass spectrometric analysis of used resin beads.


Assuntos
Análise Espectral Raman , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Cromatografia de Afinidade/métodos , Anticorpos Monoclonais/química
5.
Analyst ; 147(9): 1777-1797, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35388386

RESUMO

Scientific investigation of cultural heritage objects plays a vital role in a responsible modern approach to conservation and archaeology. Recent advances in spectroscopy, such as the development of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy and ATR-FTIR spectroscopic imaging, have opened up a window of opportunities for characterisation of materials in artefacts and collections from museums. This review summarises some of the recent advances and applications of these ATR-FTIR spectroscopic analytical techniques in the area of cultural heritage studies, including examples of cross-sections of oil paintings, paper, textiles, plastic objects, potteries, glasses and mineral artefacts. Two of the major advantages of ATR mode measurements are minimal or no requirements for sample preparation and its provision for high lateral spatial resolution. In addition to conventional single point detection, two-dimensional mapping and imaging is especially beneficial for chemical visualisation of multi-layered structure cultural objects. This review also explores the implications of these advantages as well as some limitations and provides a brief outlook for the possible future developments in this area.

6.
Anal Chem ; 93(44): 14635-14642, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699174

RESUMO

In this study, the novel application of ATR-FTIR spectroscopy and macro ATR-FTIR spectroscopic imaging overcame an analytical challenge in conservation science: the time-resolved, chemical, and spatial investigation of the reaction of inorganic treatments for stone conservation (ammonium oxalate, AmOx; ammonium phosphate, DAP) occurring in water-based solutions. The aim was to (1) assess the composition and localization of reaction products and their phase variation during the reaction in real time and directly in an aqueous environment and (2) investigate the reaction of AmOx and DAP with calcite and the transformations induced to the substrate with a time-resolved approach. The new analytical results showed that for both treatments, the formation of new crystalline phases initiated at the early stages of the reaction. Their composition changed during the treatment and led to more stable phases. The reactivity of the stone substrate to the treatments varied as a function of the stone material features, such as the specific surface area. A clear influence of post-treatment rinsing on the final composition of reaction phases was observed. Above all, our research demonstrates the actual feasibility, practicality, and high potential of an advanced ATR-FTIR spectroscopic approach to investigate the behavior of conservation treatments and provided new analytical tools to address the choices of conservation in pilot worksites. Lastly, this study opens novel analytical perspectives based on the new possible applications of ATR-FTIR spectroscopic imaging in the field of conservation science, materials science, and analytical chemistry.


Assuntos
Carbonato de Cálcio , Diagnóstico por Imagem , Testes Diagnósticos de Rotina , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Analyst ; 146(9): 2902-2909, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724288

RESUMO

Biopharmaceuticals are used to treat a range of diseases from arthritis to cancer, however, since the advent of these highly specific, effective drugs, there have been challenges involved in their production. The most common biopharmaceuticals, monoclonal antibodies (mAbs), are vulnerable to aggregation and precipitation during processing. Freeze thaw cycles (FTCs), which can be required for storage and transportation, can lead to a substantial loss of product, and contributes to the high cost of antibody production. It is therefore necessary to monitor aggregation levels at susceptible points in the production pathway, such as during purification and transportation, thus contributing to a fuller understanding of mAb aggregation and providing a basis for rational optimisation of the production process. This paper uses attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and spectroscopic imaging to investigate the effect of these potentially detrimental FTCs on protein secondary structure in both static wells and under flowing conditions, using lysozyme as a model protein. The results revealed that the amount of protein close to the surface of the ATR crystal, and hence level of aggregates, increased with increasing FTCs. This was observed both within wells and under flow conditions, using conventional ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Interestingly, we also observed changes in the Amide I band shape indicating an increase in ß-sheet contribution, and therefore an increase in aggregates, with increasing number of FTCs. These results show for the first time how ATR-FTIR spectroscopy can be successfully applied to study the effect of FTC cycles on protein samples. This could have numerous broader applications, such as in biopharmaceutical production and rapid diagnostic testing.

8.
Analyst ; 146(16): 5177-5185, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296229

RESUMO

Therapeutic monoclonal antibodies (mAbs) are effective treatments for a range of cancers and other serious diseases, however mAb treatments cost on average ∼$100 000 per year per patient, limiting their use. Currently, industry favours Protein A affinity chromatography (PrAc) as the key step in downstream processing of mAbs. This step, although highly efficient, represents a significant mAb production cost. Fouling of the Protein A column and Protein A ligand leaching contribute to the cost of mAb production by shortening the life span of the resin. In this study, we assessed the performance of used PrAc resin recovered from the middle inlet, center and outlet as well as the side inlet of a pilot-scale industrial column. We used a combination of static binding capacity (SBC) analysis and Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy to explore the used resin samples. SBC analysis demonstrated that resin from the inlet of the column had lower binding capacity than resin from the column outlet. ATR-FTIR spectroscopy with PLS (partial least square) analysis confirmed the results obtained from SBC analysis. Importantly, in situ ATR-FTIR spectroscopy also allowed both measurement of the concentration and assessment of the conformational state of the bound Protein A. Our results reveal that PrAc resin degradation after use is dependent on column location and that neither Protein A ligand leaching nor denaturation are responsible for binding capacity loss.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Proteínas Mutadas de Ataxia Telangiectasia , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Anal Bioanal Chem ; 413(2): 455-467, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169173

RESUMO

Metal soaps are formed in paint layers thorough the reaction of metal ions of pigments and fatty acids of organic binders. In this study, micro-ATR-FTIR spectroscopic imaging was used to analyse the formation of lead soaps in oil-based paint layers in relation to their exposure to moisture sources. The investigations were carried out on authentic samples of complex stratigraphies from cold painted terracotta statues (Sacred Mount, Varallo, UNESCO) and different IR-active lead white pigments, organic materials, and lead soaps were discriminated. The saponification of selected paint layers was correlated to the conservation history, the manufacturing technique, and the build-up of layers. The presence of hydrophilic layers within the stratigraphy and their role as a further water source are discussed. Furthermore, the modifications experienced by lead-based pigments from the core of an intact grain of pigment towards the newly formed decay phases were investigated via a novel approach based on shift of the peak for the corresponding spectral bands and their integrated absorbance in the ATR-FTIR spectra. Qualitative information on the spatial distribution from the chemical images was combined with quantitative information on the peak shift to evaluate the different manufacture (lead carbonate, basic lead carbonate) or the extent of decay undergone by the lead-based pigments as a function of their grain size, contiguous layers, and moisture source. Similar results, having a high impact on heritage science and analytical chemistry, allow developing up-to-date conservation strategies by connecting an advanced knowledge of the materials to the social and conservation history of artefacts.

10.
Anal Chem ; 92(14): 9691-9698, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32551580

RESUMO

The effects of hydration on the DNA conformation in the colon biopsy tissues at different disease stages, hyperplasia, dysplasia, and cancer, and their subsequent classifications were investigated in this study. FTIR spectroscopic imaging was used to study the tissues while controlling the humidity from 16% RH to 88% RH using saturated salt solutions. A nonuniform uptake of water into the tissue at its maximum hydrated state was observed in the chemical images showing the distribution of the absorbance of the νas OH spectral band. The regions of high absorbance of this band in the tissues overlap with the regions of high absorbance of predominantly the phosphate (1143-1100 cm-1) and lipid (2879-2844 cm-1) bands. Analysis of the second derivative spectra of the hydrated and dehydrated colon tissues further revealed significant peak shifts and changes in absorbance of the spectral bands that correspond to the vibrations of the phosphate group of DNA. These findings showed some disparities when compared to the effect of hydration on the infrared spectra of live cells and pure isolated DNA, possibly due to the presence of DNA mostly in its A-form in the formalin fixed tissues. Coupled with principal component analysis, the spectral biomarkers that differentiate the healthy colon tissues from the diseased tissues were identified to be in the phosphodiester spectral region (1300-1000 cm-1). This differentiation varied under different humidity conditions, with the highest sensitivity of ∼98% found at the dehydrated state of the tissues with random forest supervised classification.


Assuntos
Neoplasias do Colo/diagnóstico , Umidade , Manejo de Espécimes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água , DNA/química , Humanos , Conformação de Ácido Nucleico
11.
Anal Chem ; 92(7): 4760-4764, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129602

RESUMO

Monoclonal antibodies (mAbs) have been used as therapeutics for the last few decades. It is necessary to investigate the stability of these mAbs under stress conditions and to elucidate aggregation mechanisms as a means of developing approaches which minimize the problem. Attenuated total reflection (ATR)-FTIR spectroscopic imaging allows probing of a sample at a depth of penetration of around 0.5-5 µm, which makes it suitable for the study of aggregated proteins when accumulated as a layer close to the surface of the ZnSe internal reflection element (IRE). Here, macro ATR-FTIR spectroscopic imaging, along with a variable angle of incidence accessory, have been used to differentiate between the secondary structure of proteins in bulk solution and those that have precipitated onto or near the ZnSe IRE surface. IgG spectra obtained from protein samples in individual wells have been averaged, extracted, and preprocessed, and the Amide I bands of the protein samples were compared and further analyzed to reveal protein distribution at the ZnSe IRE surface. These findings show depth profiling of IgG aggregates at the ZnSe IRE surface (0.5-5 µm) and do not follow a trend of decreasing protein presence with an increasing angle of incidence or increasing depth of penetration, suggesting an irregular distribution of aggregates in the z-direction.


Assuntos
Anticorpos Monoclonais/química , Tamanho da Partícula , Agregados Proteicos , Compostos de Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Compostos de Zinco/química
12.
Analyst ; 144(9): 2954-2964, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30758356

RESUMO

The depth of penetration and effective thickness in ATR-FTIR spectroscopic imaging are dependent on the wavelength and angle of incidence of the incoming light beam. We have demonstrated, for the first time, that variable angle micro ATR-FTIR, which is created via the insertion of circular apertures, is intrinsic at examining embedded components within a prostate tissue specimen. This is done by constructing a 3D model from the stacks of 2D chemical images obtained, each of which represents the spatial distribution of a chosen spectral band assigned to the component of interest at a different probing depth. ATR-FTIR imaging is also shown to have the ability to resolve subcellular components of cells such as organelles. For differentiation of diseased and non-diseased tissues, statistical tests are employed to analyse the spectral datasets obtained. When the second derivative of the spectral datasets was subjected to t-test analysis, the spectral differences between both samples in the fingerprint region are shown to be more significant at a shallow depth of penetration, with the greatest variance at the spectral band of 1235 cm-1 (vasPO2-), depicted by plotting the scores of PCA on its first two PCs. Overall, this paper demonstrates a non-destructive, label-free approach for examining heterogeneous biological samples in the z-direction to construct a 3D model using micro ATR-FTIR imaging, in a qualitative and semi-quantitative manner.


Assuntos
Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Masculino
13.
Anal Bioanal Chem ; 411(26): 6969-6981, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418050

RESUMO

Fourier transform infrared (FTIR) spectroscopic imaging of colon biopsy tissues in transmission combined with machine learning for the classification of different stages of colon malignancy was carried out in this study. Two different approaches, an optical and a computational one, were applied for the elimination of the scattering background during the measurements and compared with the results of the machine learning model without correction for the scattering. Several different data processing pathways were implemented in order to obtain a high accuracy of the prediction model. This study demonstrates, for the first time, that C-H stretching and amide I bands are of little to no significance in the classification of the colon malignancy, based on the Gini importance values by random forest (RF). The best prediction outcome is found when supervised RF classification was carried out in the fingerprint region of the spectral data between 1500 and 1000 cm-1 (excluding the contribution of amide I and II bands). An overall prediction accuracy higher than 90% is achieved through the RF. The results also show that dysplastic and hyperplastic tissues are well distinguished. This leads to the insight that the important differences between hyperplastic and dysplastic colon tissues lie within the fingerprint region of FTIR spectra. In this study, computational correction performed better than optical correction, but the findings show that the disease states of colon biopsies can be distinguished effectively without elimination of Mie scattering effect. Graphical abstract.


Assuntos
Colo/diagnóstico por imagem , Neoplasias do Colo/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Colo/química , Neoplasias do Colo/química , Aprendizado de Máquina , Prognóstico
14.
Analyst ; 143(8): 1735-1757, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29504623

RESUMO

Vibrational spectroscopies, based on infrared absorption and/or Raman scattering provide a detailed fingerprint of a material, based on the chemical content. Diagnostic and prognostic tools based on these technologies have the potential to revolutionise our clinical systems leading to improved patient outcome, more efficient public services and significant economic savings. However, despite these strong drivers, there are many fundamental scientific and technological challenges which have limited the implementation of this technology in the clinical arena, although recent years have seen significant progress in addressing these challenges. This review examines (i) the state of the art of clinical applications of infrared absorption and Raman spectroscopy, and (ii) the outstanding challenges, and progress towards translation, highlighting specific examples in the areas of in vivo, ex vivo and in vitro applications. In addition, the requirements of instrumentation suitable for use in the clinic, strategies for pre-processing and statistical analysis in clinical spectroscopy and data sharing protocols, will be discussed. Emerging consensus recommendations are presented, and the future perspectives of the field are assessed, particularly in the context of national and international collaborative research initiatives, such as the UK EPSRC Clinical Infrared and Raman Spectroscopy Network, the EU COST Action Raman4Clinics, and the International Society for Clinical Spectroscopy.

15.
Analyst ; 143(8): 1934, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29595198

RESUMO

Correction for 'Clinical applications of infrared and Raman spectroscopy: state of play and future challenges' by Matthew J. Baker, et al., Analyst, 2018, DOI: 10.1039/c7an01871a.

16.
Phys Chem Chem Phys ; 20(37): 24088-24098, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204183

RESUMO

The intrinsic symmetry and orientation of single molecules play a crucial role in enhanced optical spectroscopy and nanoscopic imaging. Unlike bulk materials, in which all molecular orientations are unavoidably averaged in the far-field, intensities of vibrational modes in tip-enhanced Raman scattering (TERS) depend greatly on the polarization direction of near-field light. It means that a near-field Raman "dichroism" becomes possible for anisotropic single molecules. Quantitative evaluation of the molecular orientation gets complicated by the depolarization of TERS intensities. Clearly, the depolarization effect is enhanced with an optical antenna and/or a substrate due to their anisotropic origin. In this study, we provide theoretical and experimental insights into Raman tensors of a single azobenzene chromophore, a Disperse Orange 3 (DO3) molecule, supported with a glass base. It is shown that the Raman intensities of the spectral bands corresponding to symmetric and antisymmetric vibrations of the DO3 molecule, for example, -NO2 and -NH2 moieties, behave differently on the nanoscale. In particular, three-dimensional far- and near-field Raman diagrams indicate that antisymmetric vibrations become highly depolarized, whereas symmetric vibrations remain unchangeable but intensities of their spectral bands are enhanced. Here, we introduce a near-field depolarization factor defined as a normalized discrepancy of longitudinal and transverse TERS signals. We believe that our first steps will ultimately lead to advanced facilities of TERS spectroscopy and nanoscopy, related to the orientation of anisotropic single molecules and their symmetries.

17.
Nano Lett ; 17(9): 5533-5539, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28813607

RESUMO

We consider a nonlinear mechanism of localized light inelastic scattering within nanopatterned plasmonic and Raman-active titanium nitride (TiN) thin films exposed to continuous-wave (cw) modest-power laser light. Owing to the strong third-order nonlinear interaction between optically excited broadband surface plasmons and localized Stokes and anti-Stokes waves, both stimulated and inverse Raman effects can be observed. We provide experimental evidence for coherent amplification of the localized Raman signals using a planar square-shaped refractory antenna.

18.
Anal Chem ; 89(2): 1283-1289, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28035811

RESUMO

Protrusions, efflorescence, delamination, and opacity decreasing are severe degradation phenomena affecting oil paints with zinc oxide, one of the most common white pigments of the 20th century. Responsible for these dramatic alterations are the Zn carboxylates (also known as Zn soaps) originated by the interaction of the pigment and the fatty acids resulting from the hydrolysis of glycerides in the oil binding medium. Despite their widespread occurrence in paintings and the growing interest of the scientific community, the process of formation and evolution of Zn soaps is not yet fully understood. In this study micro-attenuated total reflection (ATR)-FT-IR spectroscopic imaging was required for the investigation at the microscale level of the nature and distribution of Zn soaps in the painting Alchemy by J. Pollock (1947, Peggy Guggenheim Collection, Venice) and for comparison with artificially aged model samples. For both actual samples and models, the role of AlSt(OH)2, a jellifying agent commonly added in 20th century paint tube formulations, proved decisive for the formation of zinc stearate-like (ZnSt2) soaps. It was observed that ZnSt2-like soaps first form around the added AlSt(OH)2 particles and then eventually grow within the whole painting stratigraphy as irregularly shaped particles. In some of the Alchemy samples, and diversely from the models, a peculiar distribution of ZnSt2 aggregates arranged as rounded and larger particles was also documented. Notably, in one of these samples, larger agglomerates of ZnSt2 expanding toward the support of the painting were observed and interpreted as the early stage of the formation of internal protrusions. Micro-ATR-FT-IR spectroscopic imaging, thanks to a very high chemical specificity combined with high spatial resolution, was proved to give valuable information for assessing the conservation state of irreplaceable 20th century oil paintings, revealing the chemical distribution of Zn soaps within the paint stratigraphy before their effect becomes disruptive.

19.
Pharm Res ; 34(5): 990-1001, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27573574

RESUMO

PURPOSE: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution. METHODS: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier. RESULTS: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner. CONCLUSIONS: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.


Assuntos
Morfolinas/química , Polietilenoglicóis/química , Polímeros/química , Polivinil/química , Pirrolidinas/química , Aprepitanto , Química Farmacêutica/métodos , Cristalização , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Imageamento por Ressonância Magnética/métodos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
20.
Analyst ; 142(2): 257-272, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27905577

RESUMO

Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa