Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Breast Cancer Res ; 16(1): R15, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24472707

RESUMO

INTRODUCTION: Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2. METHODS: In vitro studies using AI (letrozole or exemestane)-resistant and AI-sensitive cells were conducted to investigate the regulation and role of HIF-1 in AI resistance. Western blot and RT-PCR analyses were conducted to compare protein and mRNA expression, respectively, of ERα, HER2, and HIF-1α (inducible HIF-1 subunit) in AI-resistant versus AI-sensitive cells. Similar expression analyses were also done, along with chromatin immunoprecipitation (ChIP), to identify previously known HIF-1 target genes, such as breast cancer resistance protein (BCRP), that may also play a role in AI resistance. Letrozole-resistant cells were treated with inhibitors to HER2, kinase pathways, and ERα to elucidate the regulation of HIF-1 and BCRP. Lastly, cells were treated with inhibitors or inducers of HIF-1α to determine its importance. RESULTS: Basal HIF-1α protein and BCRP mRNA and protein are higher in AI-resistant and HER2-transfected cells than in AI-sensitive, HER2- parental cells under nonhypoxic conditions. HIF-1α expression in AI-resistant cells is likely regulated by HER2 activated-phosphatidylinositide-3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, as its expression was inhibited by HER2 inhibitors and kinase pathway inhibitors. Inhibition or upregulation of HIF-1α affects breast cancer cell expression of BCRP; AI responsiveness; and expression of cancer stem cell characteristics, partially through BCRP. CONCLUSIONS: One of the mechanisms of AI resistance may be through regulation of nonhypoxic HIF-1 target genes, such as BCRP, implicated in chemoresistance. Thus, HIF-1 should be explored further for its potential as a biomarker of and therapeutic target.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Proteínas de Neoplasias/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hipóxia Celular , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Letrozol , Células MCF-7 , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , Receptor ErbB-2/antagonistas & inibidores , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Esferoides Celulares , Serina-Treonina Quinases TOR/metabolismo , Triazóis/farmacologia , Células Tumorais Cultivadas
2.
Breast Cancer Res Treat ; 135(3): 681-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878889

RESUMO

Aromatase inhibitors (AIs) are an effective therapy in treating estrogen receptor-positive breast cancer. Nonetheless, a significant percentage of patients either do not respond or become resistant to AIs. Decreased dependence on ER-signaling and increased dependence on growth factor receptor signaling pathways, particularly human epidermal growth factor receptor 2 (EGFR2/HER2), have been implicated in AI resistance. However, the role of growth factor signaling remains unclear. This current study investigates the possibility that signaling either through HER2 alone or through interplay between epidermal growth factor receptor 1 (EGFR/HER1) and HER2 mediates AI resistance by increasing the tumor initiating cell (TIC) subpopulation in AI-resistant cells via regulation of stem cell markers, such as breast cancer resistance protein (BCRP). TICs and BCRP are both known to be involved in drug resistance. Results from in vitro analyses of AI-resistant versus AI-sensitive cells and HER2-versus HER2+ cells, as well as from in vivo xenograft tumors, indicate that (1) AI-resistant cells overexpress both HER2 and BCRP and exhibit increased TIC characteristics compared to AI-sensitive cells; (2) inhibition of HER2 and/or BCRP decrease TIC characteristics in letrozole-resistant cells; and (3) HER2 and its dimerization partner EGFR/HER1 are involved in the regulation of BCRP. Overall, these results suggest that reducing or eliminating the TIC subpopulation with agents that target BCRP, HER2, EGFR/HER1, and/or their downstream kinase pathways could be effective in preventing and/or treating acquired AI resistance.


Assuntos
Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , Nitrilas/farmacologia , Receptor ErbB-2/metabolismo , Triazóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Feminino , Humanos , Letrozol , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biol Reprod ; 81(2): 378-87, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19420388

RESUMO

We have previously shown that 17beta-estradiol (E(2)) increases vascular endothelial growth factor A (Vegfa) gene expression in the rat uterus, resulting in increased microvascular permeability, and that this involves the simultaneous recruitment of hypoxia-inducible factor 1 (HIF1) and estrogen receptor alpha (ESR1) to the Vegfa gene promoter. Both events require the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. However, those studies were carried out using whole uterine tissue, and while most evidence indicates that the likely site of E(2)-induced Vegfa expression is luminal epithelial (LE) cells, other studies have identified stromal cells as the site of that expression. To address this question, the pathway regulating Vegfa expression was reexamined using LE cells rapidly isolated after E(2) treatment. In addition, we further characterized the nature of the receptor through which E(2) triggers the signaling events that lead to Vegfa expression using the specific ESR1 antagonist ICI 182,780. In agreement with previous results in the whole uterus, E(2) stimulated Vegfa mRNA expression in LE cells, peaking at 1 h (4- to 14-fold) and returning to basal levels by 4 h. Treatment with E(2) also increased phosphorylation of AKT in LE cells, as well as of the downstream mediators FRAP1 (mTOR), GSK3B, and MDM2. The alpha subunit of HIF1 (HIF1A) was present in LE cells before E(2) treatment, was unchanged 1 h after E(2), but was >2-fold higher by 4 h. Chromatin immunoprecipitation analysis showed that HIF1A was recruited to the Vegfa promoter by 1 h and was absent again by 4 h. The E(2) activation of the PI3K/AKT pathway, HIF1A recruitment to the Vegfa promoter, and Vegfa expression were all blocked by ICI 182,780. In summary, the rapid E(2)-induced signaling events that lead to the expression of Vegfa observed previously using the whole uterus occur in LE cells and appear to be initiated via a membrane form of ESR1.


Assuntos
Estradiol/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Útero/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Análise de Variância , Animais , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/administração & dosagem , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Serina-Treonina Quinases TOR , Útero/citologia , Útero/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Endocrinology ; 148(5): 2363-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17272396

RESUMO

Vascular endothelial growth factor (VEGF) plays an essential role in normal uterine physiology and function as well as endometrial cancer and other uterine disorders. Recently we showed that estrogen regulation of VEGF expression in the rat uterus involves rapid recruitment of both estrogen receptor (ER)-alpha and hypoxia-inducible factor (HIF)-1alpha to the VEGF promoter. Estrogen is known to stimulate both the MAPK and phosphatidylinositol 3-kinase (PI3K) pathways, which have been linked to the activation of both of these transcription factors. Therefore, the involvement of these pathways in estrogen-induced VEGF expression was investigated. Inhibitors of the MAPK (U0126) or PI3K pathways (wortmannin or LY294002) were administered ip to immature female rats 1 h before 17beta-estradiol (E(2)) treatment. E(2) activation of both pathways occurred and was completely inhibited by the appropriate antagonist. Only PI3K inhibitors, however, blocked E(2) stimulation of VEGF mRNA expression and E(2)-induced uterine edema. In vivo chromatin immunoprecipitation analysis showed that this was associated with a failure of both HIF-1alpha and ERalpha to bind to the VEGF promoter. To determine whether inhibiting the PI3K pathway affected ERalpha induction of other estrogen target genes, the expression of creatine kinase B and progesterone receptor A/B was also examined. The expression of each was also inhibited by wortmannin, as was ERalpha binding to the creatine kinase B promoter. In conclusion, although estrogen activates both the MAPK and PI3K pathways in the rat uterus, activation of HIF-1alpha and ERalpha, and therefore regulation of VEGF gene expression is dependent only on the PI3K/Akt pathway. Furthermore, activation of the PI3K pathway appears to be a common requirement for the expression of estrogen-induced genes. These findings not only shed light on estrogen action in normal target tissues but also have important implications for cancer biology because excessive PI3K, HIF-1alpha, and VEGF activity are common in estrogen-dependent tumors.


Assuntos
Edema/metabolismo , Estradiol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Útero/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Androstadienos/farmacologia , Animais , Cromonas/farmacologia , Edema/induzido quimicamente , Edema/fisiopatologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Regiões Promotoras Genéticas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Útero/efeitos dos fármacos , Útero/fisiopatologia , Wortmanina
5.
Mol Endocrinol ; 19(8): 2006-19, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15774498

RESUMO

Vascular endothelial growth factor (VEGF) plays a pivotal role in the regulation of microvascular permeability and angiogenesis, processes essential for normal endometrial growth and implantation. Estrogen [17beta-estradiol (E2)], via its receptor (ER alpha), rapidly stimulates VEGF expression in the uterus at the transcriptional level. The VEGF gene promoter, however, lacks a consensus estrogen response element (ERE), and attempts to identify the site through which E2 induces VEGF expression have yielded contradictory results. To address this question, we modified the chromatin immunoprecipitation method to identify transcription factors that interact with the VEGF promoter in the rat uterus in response to E2. Chromatin immunoprecipitation showed that both Sp1 and Sp3 were associated with a proximal, GC-rich region of the promoter before E2 treatment. E2 induced an increase in Sp1 binding and the recruitment of ER alpha, and the coactivator p300 to this region. The association of ER alpha persisted, however, after VEGF mRNA levels had declined again (at 4 h), indicating that other factors might be involved in that expression. Western analysis showed that both the alpha- and beta-subunits of the transcription factor hypoxia-inducible factor 1 (HIF-1), which regulates VEGF expression in response to hypoxia and several hormones and growth factors, were present in the uterus. Furthermore, E2 rapidly induced their recruitment to the -944 to -611 bp region of the VEGF promoter, which contains the hypoxia response element to which HIF-1 binds. This binding was transient, matching the pattern of E2-induced VEGF expression. These results indicate that HIF-1 is an important mediator of E2-induced VEGF expression in the uterus. In addition, E2 also induced a later increase in HIF-1alpha mRNA and protein expression in the uterus, suggesting that it may be required for longer term effects of E2 on the uterus as well. In contrast to the uterus, HEC1A cells cultured in 95% air-5% CO2 (and therefore 20% O2) contained no HIF-1alpha, consistent with the inability of E2 to stimulate the expression of VEGF by these and other cell types in vitro.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Útero/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Edema/patologia , Feminino , Humanos , Modelos Biológicos , Modelos Genéticos , Oxigênio/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Fator de Transcrição Sp1/metabolismo , Fatores de Tempo
6.
Ann N Y Acad Sci ; 1041: 233-47, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15956714

RESUMO

Increased uterine capillary permeability, which can be induced by both estrogen and relaxin, is required for endometrial growth and implantation. This effect is mediated in both cases by estrogen receptors (ERs), via stimulation of vascular endothelial growth factor (VEGF) expression. The sites on the VEGF promoter through which induction occurs, however, are completely unclear. We have used the technique of chromatin immunoprecipitation in vivo to localize the site of ER action and identify other transcription factors that are involved. We have found that ERa associates with Sp1/Sp3 at a GC-rich region of the promoter. More interesting, however, is the observation that estrogen also induces rapid, transient binding of hypoxia-inducible factor 1 (HIF-1), which mediates VEGF transcription in response to hypoxia, to the promoter. The estrogen-induced HIF-1 binding closely matches the estrogen-induced pattern of VEGF expression in the uterus, suggesting that HIF-1 is involved in that induction, and probably that of many other genes as well (HIF-1 is now known to regulate the expression of more than 40 genes). It is likely that studies now under way will also link relaxin-induced VEGF expression to HIF-1. This is based on the similarities in the effects of the two hormones on VEGF expression and on their shared ability to activate the PI3K and MAPK pathways, both of which can activate HIF-1.


Assuntos
Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Relaxina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Endométrio/irrigação sanguínea , Feminino , Regulação da Expressão Gênica/genética , Humanos , Transcrição Gênica/genética , Fator A de Crescimento do Endotélio Vascular/genética
7.
Mol Cancer Ther ; 14(11): 2642-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26310543

RESUMO

Heregulin-driven ERBB3 signaling has been implicated as a mechanism of resistance to cytotoxic and antiendocrine therapies in preclinical breast cancer models. In this study, we evaluated the effects of seribantumab (MM-121), a heregulin-blocking anti-ERBB3 monoclonal antibody, alone and in combination with the aromatase inhibitor letrozole, on cell signaling and tumor growth in a preclinical model of postmenopausal estrogen receptor-positive (ER(+)) breast cancer. In vitro, heregulin treatment induced estrogen receptor phosphorylation in MCF-7Ca cells, and long-term letrozole-treated (LTLT-Ca) cells had increased expression and activation levels of EGFR, HER2, and ERBB3. Treatment with seribantumab, but not letrozole, inhibited basal and heregulin-mediated ERBB receptor phosphorylation and downstream effector activation in letrozole-sensitive (MCF-7Ca) and -refractory (LTLT-Ca) cells. Notably, in MCF-7Ca-derived xenograft tumors, cotreatment with seribantumab and letrozole had increased antitumor activity compared with letrozole alone, which was accompanied by downregulated PI3K/MTOR signaling both prior to and after the development of resistance to letrozole. Moreover, the addition of an MTOR inhibitor to this treatment regimen did not improve antitumor activity and was not well tolerated. Our results demonstrate that heregulin-driven ERBB3 signaling mediates resistance to letrozole in a preclinical model of ER(+) breast cancer, suggesting that heregulin-expressing ER(+) breast cancer patients may benefit from the addition of seribantumab to antiendocrine therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nitrilas/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Immunoblotting , Letrozol , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuregulina-1/farmacologia , Ovariectomia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Cancer Ther ; 12(7): 1356-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23619300

RESUMO

Zoledronic acid, a third-generation bisphosphonate, has been shown to reduce cell migration, invasion, and metastasis. However, the effects of zoledronic acid on the epithelial-mesenchymal transition (EMT), a cellular process essential to the metastatic cascade, remain unclear. Therefore, the effects of zoledronic acid on EMT, using triple-negative breast cancer (TNBC) cells as a model system, were examined in more detail. Zoledronic acid treatment decreased the expression of mesenchymal markers, N-cadherin, Twist, and Snail, and subsequently upregulated expression of E-cadherin. Zoledronic acid also inhibited cell viability, induced cell-cycle arrest, and decreased the proliferative capacity of TNBC, suggesting that zoledronic acid inhibits viability through reduction of cell proliferation. As EMT has been linked to acquisition of a self-renewal phenotype, the effects of zoledronic acid on self-renewal in TNBC were also studied. Treatment with zoledronic acid decreased expression of self-renewal proteins, BMI-1 and Oct-4, and both prevented and eliminated mammosphere formation. To understand the mechanism of these results, the effect of zoledronic acid on established EMT regulator NF-κB was investigated. Zoledronic acid inhibited phosphorylation of RelA, the active subunit of NF-κB, at serine 536 and modulated RelA subcellular localization. Treatment with zoledronic acid reduced RelA binding to the Twist promoter, providing a direct link between inactivation of NF-κB signaling and loss of EMT transcription factor gene expression. Binding of Twist to the BMI-1 promoter was also decreased, correlating modulation of EMT to decreased self-renewal. On the basis of these results, it is proposed that through inactivation of NF-κB, zoledronic acid reverses EMT, which leads to a decrease in self-renewal.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Difosfonatos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Imidazóis/farmacologia , NF-kappa B/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Ácido Zoledrônico
9.
Mol Cancer Ther ; 12(12): 2804-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24092810

RESUMO

We previously showed that in innately resistant tumors, silencing of the estrogen receptor (ER) could be reversed by treatment with a histone deacetylase (HDAC) inhibitor, entinostat. Tumors were then responsive to aromatase inhibitor (AI) letrozole. Here, we investigated whether ER in the acquired letrozole-resistant tumors could be restored with entinostat. Ovariectomized athymic mice were inoculated with MCF-7Ca cells, supplemented with androstenedione (Δ(4)A), the aromatizable substrate. When the tumors reached about 300 mm(3), the mice were treated with letrozole. After initial response to letrozole, the tumors eventually became resistant (doubled their initial volume). The mice then were grouped to receive letrozole, exemestane (250 µg/d), entinostat (50 µg/d), or the combination of entinostat with letrozole or exemestane for 26 weeks. The growth rates of tumors of mice treated with the combination of entinostat with letrozole or exemestane were significantly slower than with the single agent (P < 0.05). Analysis of the letrozole-resistant tumors showed entinostat increased ERα expression and aromatase activity but downregulated Her-2, p-Her-2, p-MAPK, and p-Akt. However, the mechanism of action of entinostat in reversing acquired resistance did not involve epigenetic silencing but rather included posttranslational as well as transcriptional modulation of Her-2. Entinostat treatment reduced the association of the Her-2 protein with HSP-90, possibly by reducing the stability of Her-2 protein. In addition, entinostat also reduced Her-2 mRNA levels and its stability. Our results suggest that the HDAC inhibitor may reverse letrozole resistance in cells and tumors by modulating Her-2 expression and activity.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Aromatase/farmacologia , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Histona Desacetilases/farmacologia , Nitrilas/farmacologia , Piridinas/farmacologia , Receptor ErbB-2 , Triazóis/farmacologia , Animais , Antineoplásicos/administração & dosagem , Aromatase/genética , Aromatase/metabolismo , Inibidores da Aromatase/administração & dosagem , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Letrozol , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Camundongos , Nitrilas/administração & dosagem , Piridinas/administração & dosagem , Estabilidade de RNA/efeitos dos fármacos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Triazóis/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Endocrinology ; 150(12): 5405-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19819950

RESUMO

Estradiol (E(2)) rapidly and strongly induces vascular endothelial growth factor (VEGF) transcription in uterine endometrial epithelial cells in vivo. We have shown that this is mediated by both the estrogen receptor-alpha and hypoxia-inducible factor (HIF)-1alpha. By contrast, E(2) induces little or no VEGF expression in cultured breast or endometrial cancer cells, which lack HIF-1alpha due to the abnormally high concentration of oxygen ( approximately 20%) to which they are exposed. To test the hypothesis that restoring HIF-1alpha in cultured cells would restore the ability of E(2) to induce VEGF expression, we treated human endometrial cancer cells (ECC-1) with cobalt chloride (CoCl(2);100 microm), which prevents oxygen-induced HIF-1alpha degradation. HIF-1alpha was absent in untreated ECC-1 cells but detectable by 4 h after treatment with CoCl(2) alone, as was a significant increase in VEGF mRNA. E(2) plus CoCl(2) induced detectable HIF-1alpha expression at 2 h and an even higher level than that induced by CoCl(2) alone at 4 h; this HIF-1alpha was localized in the nuclei. This was accompanied by increasing VEGF expression, with the increase at 4 h severalfold higher than that induced by CoCl(2) alone and was concurrent with recruitment of both HIF-1alpha and estrogen receptor-alpha to the VEGF promoter. These results confirm that HIF-1alpha plays an essential role in E(2)-induced expression of VEGF. Through the induction of increased microvascular permeability and the consequent exudation of plasma growth factors, VEGF in turn may play an essential role in cancer cell proliferation in vivo.


Assuntos
Estradiol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cobalto/farmacologia , Citoplasma/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transporte Proteico/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética
11.
Am J Respir Cell Mol Biol ; 28(4): 478-84, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654637

RESUMO

Gelsolin is a potent actin filament regulatory protein that controls cytoskeletal assembly and disassembly. Because cellular gelsolin deficiency leads to pronounced actin stress fiber formation and defective chemotaxis, and similar cytoskeletal remodeling results in endothelial barrier dysfunction, we hypothesized that gelsolin deficient mice would exhibit increased vascular permeability. To test this hypothesis, we compared baseline lung lavage (BAL) protein concentration, wet/dry weight ratio, and osmotic reflection coefficient for albumin (sigma alb) in gelsolin-deficient (gsn-/-) and C57BL/6 (wild-type) mice. In addition, we assessed lung permeability in response to ischemia by evaluating BAL protein concentration after 4, 8, or 24 h of left pulmonary arterial (LPA) occlusion, and lung wet/dry weight ratio and histology after 24 h of LPA occlusion, in gsn-/- and wild-type animals, as compared with control and sham-operated mice. Baseline measurements revealed that BAL protein concentration was 18-fold higher in gsn-/- than in wild-type mice, whereas sigma alb averaged 0.62 + 0.15 in wild-type, as compared with 0.31 + 0.05 in gsn-/- animals, indicating that gelsolin deficiency caused increased pulmonary vascular permeability. Ischemia increased lung permeability (BAL protein and lung wet/dry weight) in both wild-type and gsn-/- mice. However, whereas the fold-increase in BAL protein concentration was less in gsn-/- mice (2- to 4-fold) as compared with wild-type (22- to 34-fold), the duration of ischemia-induced permeability changes was prolonged. Lung wet/dry weight and gross histology following ischemia were comparable in wild-type and gsn-/- animals. These data suggest that gelsolin significantly contributes to maintenance of vascular barrier function in the lung.


Assuntos
Permeabilidade Capilar/fisiologia , Gelsolina/genética , Gelsolina/fisiologia , Isquemia/genética , Pulmão/patologia , Circulação Pulmonar/fisiologia , Animais , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/patologia , Gelsolina/deficiência , Isquemia/patologia , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Artéria Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa